使用Linux下的FSL处理DTI扩散张量成像数据:
1. 提取b0像
输入:原始DTI数据
输出:b0像
fslroi dti_data.nii b0.nii.gz 0 1
2.剥颅骨
输入:b0像
输出:剥颅骨后的图像、图像掩膜mask
bet2 b0.nii.gz b0_brain.nii.gz -m -f 0.3
-
参数可调整
0.3代表颅骨剥离的程度,数值越大剥离的越多。
3.涡流校正
输入:原始图像、mask、采集参数acqparams.txt、索引值index.txt、bvec、bval
输出:校正后的数据
-
采集参数acqparams.tx
acqparams.txt可以按照扫描方向采用默认设置
- 从上到下扫描 使用
0 1 0 0.05
0 -1 0 0.05 - 从左到右扫描 使用
1 0 0 0.05
-1 0 0 0.05
- 从上到下扫描 使用
参考资料:

-
索引值index.txt
index可以通过下面代码生成:
indx=""
for ((i=1; i<=10; i+=1)) do
indx="$indx 1"; done
echo $indx > index.txt
其中 10 这个数值要改为原始图像的volume数(时间点)。打开原始DTI图像即可看到。
-
bvec、bval
bvec代表方向,bval代表大小。
eddy_openmp --imain=dti_data.nii --mask=b0_brain_mask.nii.gz --acqp=acqparams.txt --index=index.txt --bvecs=bvecs --bvals=bvals --out=eddy_corrected_data
- 输出的各项指标
- V1 - 1st eigenvector第一特征向量
- V2 - 2nd eigenvector
- V3 - 3rd eigenvector
- L1 - 1st eigenvalue第一特征值
- L2 - 2nd eigenvalue
- L3 - 3rd eigenvalue
- MD - mean diffusivity平均扩散率
- FA - fractional anisotropy 分数各向异性
- MO - mode of the anisotropy (oblate ~ -1; isotropic ~ 0; prolate ~ 1) 各向异性的模式(扁形~ -1;各向同性~ 0;扁长的~ 1)
- S0 - raw T2 signal with no diffusion weighting 无扩散加权的原始T2信号
1万+

被折叠的 条评论
为什么被折叠?



