DTI数据处理流程

2025博客之星年度评选已开启 10w+人浏览 794人参与

使用Linux下的FSL处理DTI扩散张量成像数据:

1. 提取b0像
输入:原始DTI数据
输出:b0像

fslroi dti_data.nii b0.nii.gz 0 1

2.剥颅骨
输入:b0像
输出:剥颅骨后的图像、图像掩膜mask

bet2 b0.nii.gz b0_brain.nii.gz -m -f 0.3
  • 参数可调整

    0.3代表颅骨剥离的程度,数值越大剥离的越多。

3.涡流校正
输入:原始图像、mask、采集参数acqparams.txt、索引值index.txt、bvec、bval
输出:校正后的数据

  • 采集参数acqparams.tx

    acqparams.txt可以按照扫描方向采用默认设置

    • 从上到下扫描 使用
      0 1 0 0.05
      0 -1 0 0.05
    • 从左到右扫描 使用
      1 0 0 0.05
      -1 0 0 0.05

参考资料:
在这里插入图片描述

参考资料链接

  • 索引值index.txt

    index可以通过下面代码生成:

indx="" 
for ((i=1; i<=10; i+=1)) do 
indx="$indx 1"; done 
echo $indx > index.txt

其中 10 这个数值要改为原始图像的volume数(时间点)。打开原始DTI图像即可看到。

  • bvec、bval

    bvec代表方向,bval代表大小。

eddy_openmp --imain=dti_data.nii --mask=b0_brain_mask.nii.gz --acqp=acqparams.txt --index=index.txt --bvecs=bvecs --bvals=bvals --out=eddy_corrected_data

- 输出的各项指标

  • V1 - 1st eigenvector第一特征向量
  • V2 - 2nd eigenvector
  • V3 - 3rd eigenvector
  • L1 - 1st eigenvalue第一特征值
  • L2 - 2nd eigenvalue
  • L3 - 3rd eigenvalue
  • MD - mean diffusivity平均扩散率
  • FA - fractional anisotropy 分数各向异性
  • MO - mode of the anisotropy (oblate ~ -1; isotropic ~ 0; prolate ~ 1) 各向异性的模式(扁形~ -1;各向同性~ 0;扁长的~ 1)
  • S0 - raw T2 signal with no diffusion weighting 无扩散加权的原始T2信号
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

裤裤兔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值