预训练是什么?预训练和直接训练的区别?

        一个劲说预训练模型,所以说到底什么是预训练模型?真让人头大!

         本文就以最简单的视角切入,以一个例子让你明白预训练到底是什么?它和我们平时最常说的直接训练的区别又是什么?

个人理解

        假设有一个任务:现在有个紧急比赛,需要让我们的小baby在一个月内学会跑步!

 直接训练方式:

        我之前什么都没教过他,直接让他学会怎么跑步。那他还要自己摸索怎么爬,怎么站立?这两步学会了才能学跑步。这是我们正常的学习思维。但是他本身就是一个小baby,让它自己摸索爬和站立的过程是非常长的。等他学完这两步比赛都结束了!

         我们知道训练一个神经网络要学习的东西其实就是一个合适的参数。那直接训练方式表现在模型参数上,就是我随机初始化所有的模型参数,然后模型从0开始学习针对当前这个任务的合适参数。

预训练方式:

        在任务出现之前,我就已经先教会他怎么爬、怎么站立了。现在比赛来了,我只需让它在之前的基础上随便学学都能很快学会。而且耗时要大大缩短!

         预训练方式表现在模型参数上,就是我之前已经拿一个合适的任务(这个任务可能是和很多任务有共同之处的任务)提前训练好了所有的模型参数(预训练)。我们不需要再从0开始训练所有参数了,但是针对我们目前这个任务,有些参数可能不合适,我们只需要在当前参数的基础上稍加修改(微调)就可以得到比较好的效果,这样学习时间必然会大大减小。而且,由于预训练过程和我们当前的任务不是同时进行的,所以可以提前花很长时间把几千亿乃至万万亿参数(现在应该还没)提前预训练好,以求和更多的具体任务都有重合,从而只需要我们微调就可以在各项任务达到不错的效果。

        预训练就像“我们读了新华字典、牛津字典后,再让我们解释一个某个字”一样神奇~

 

<think>好的,用户现在问的是“有没有可能是传入的预训练模型不对?”,结合之前的对话历史,用户之前的问题是关于修改mmdetection中的class_names从80类调整到1203类。现在用户可能遇到了修改后的问题,怀疑是否是预训练模型的问题。 首先,我需要确认用户的问题场景。用户在使用mmdetection框架训练或测试模型时,可能修改了数据集配置,将类别数从默认的COCO 80类改为LVIS的1203类,但遇到了问题,比如类别不匹配或性能异常,所以怀疑预训练模型是否正确。 接下来,分析预训练模型是否会影响类别数。通常,预训练模型的检测头(如bbox_headmask_head)的权重是根据预训练时的类别数初始化的。如果用户修改了类别数但没有正确调整模型结构,或者加载了错误类别的预训练模型,就会导致维度不匹配,进而引发错误。 可能的错误情况包括:加载了COCO预训练的模型(80类),但当前模型配置是1203类,导致检测头的权重矩阵维度不匹配,出现shape错误;或者在微调时没有正确设置load_from或resume_from路径,导致加载了不兼容的权重。 需要进一步思考用户可能遇到的症状,比如训练时报错显示维度不匹配,或者在推理时结果异常。例如,如果用户修改了num_classes为1203,但加载了COCO预训练的模型,而COCO的检测头权重是80类的,那么在初始化时可能会因为维度不匹配而报错,或者在运行时出现类别索引超出范围的问题。 此外,用户可能在配置文件中没有正确设置model.backbone.init_cfg或load_from,导致加载了错误的预训练权重。或者,用户可能使用了不同的模型架构,比如原本用于COCO的Faster R-CNN,但LVIS可能需要不同的backbone或检测头结构,导致不兼容。 需要提醒用户检查的关键点包括:模型配置文件中的num_classes是否与数据集一致,预训练模型的来源是否匹配当前模型结构,加载权重时是否跳过了不匹配的部分(比如使用pretrained=None或者正确设置load_from),以及在修改类别数后是否需要重新初始化检测头。 另外,用户可能在训练时忽略了警告信息,比如权重加载时的mismatch提示,这些都需要检查日志文件。同时,如果用户自行训练过模型但未正确保存或加载,也可能导致预训练模型不正确。 总结,用户的问题确实有可能是预训练模型不正确导致的,需要从配置文件、模型结构匹配性、权重加载方式等方面进行排查。需要给出具体的检查步骤解决方案,帮助用户确认问题根源。</think>--- ### **核心结论** **完全有可能**。预训练模型与当前任务类别数不匹配会导致权重加载错误、类别索引越界等问题。以下是详细排查解决方案: --- ### **1. 现象快速诊断** 当出现以下情况时,**预训练模型错误**的可能性极高: - 训练时报错:`RuntimeError: shape mismatch`(权重维度不匹配) - 推理时预测类别始终在0-79范围内(本应是0-1202) - 验证集mAP异常低(如从正常50%骤降到0.1%) - 日志中出现`missing keys`或`unexpected keys`警告 --- ### **2. 关键原因分析** #### **2.1 权重来源不匹配** | 预训练模型类型 | 适用场景 | 错误案例 | |----------------|----------|----------| | COCO预训练 (80类) | 直接用于LVIS 1203类 | 检测头权重维度不匹配(80 vs 1203) | | LVIS预训练 (1203类) | 用于自定义10类 | 标签ID越界(如预测出第1000类) | | ImageNet预训练 | 仅初始化主干网络 | 检测头随机初始化可能效果差 | #### **2.2 配置文件冲突** 错误配置示例: ```python # configs/my_config.py model = dict( backbone=dict( init_cfg=dict( type='Pretrained', checkpoint='https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth' # COCO预训练 ) ), roi_head=dict( bbox_head=dict(num_classes=1203) # LVIS类别数 ) ) ``` **矛盾点**:主干网络加载COCO权重,但检测头需要1203类输出 --- ### **3. 解决方案** #### **3.1 正确加载预训练权重** **情景1:使用LVIS官方预训练模型** ```python # 在配置文件中指定LVIS预训练模型 load_from = 'https://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis-dbd06831.pth' ``` **情景2:从COCO迁移学习到LVIS** ```python # 修改配置以兼容不同类别数 model = dict( roi_head=dict( bbox_head=dict( num_classes=1203, init_cfg=dict( # 特殊初始化新类别权重 type='Normal', override=dict( name='fc_cls', # 分类层 mean=0, std=0.01, bias=0 ) ) ) ) ) # 只加载主干网络权重(跳过检测头) load_from = 'coco_pretrained_models/faster_rcnn_r50_fpn_1x_coco.pth' ``` #### **3.2 强制对齐类别维度** 当必须使用不同类别数的预训练模型时: ```bash # 启动训练时添加--cfg-options python tools/train.py configs/my_config.py \ --cfg-options model.roi_head.bbox_head.num_classes=1203 \ load_from='coco_pretrained.pth' \ model.backbone.init_cfg.checkpoint='imagenet_pretrained.pth' ``` #### **3.3 验证权重加载** 在代码中添加检查点分析: ```python # 检查权重键值匹配情况 from mmdet.apis import init_detector model = init_detector(config, checkpoint) print(f'Loaded {len(model.state_dict())} layers') # 典型输出: # Loaded 290 layers, 250 matched, 40 mismatched ``` --- ### **4. 错误案例深度解析** #### **案例1:维度不匹配报错** ```python RuntimeError: Error(s) in loading state_dict for FasterRCNN: size mismatch for roi_head.bbox_head.fc_cls.weight: copying a param with shape torch.Size([81, 1024]) from checkpoint, which has shape torch.Size([1204, 1024]) ``` **原因**:COCO预训练模型的分类层输出81类(80+背景),而当前模型配置为1203+1=1204类 **解决方案**: 1. 删除预训练分类层权重: ```python model = dict( roi_head=dict( bbox_head=dict( num_classes=1203, init_cfg=dict( type='Pretrained', checkpoint='coco_model.pth', prefix='backbone' # 仅加载主干网络 ) ) ) ) ``` 2. 随机初始化新分类层 --- #### **案例2:静默失败(无报错但性能差)** **现象**:使用COCO预训练模型训练LVIS,mAP仅为正常值的10% **诊断步骤**: 1. 检查模型输出维度: ```python # 在mmdet/models/roi_heads/bbox_heads/bbox_head.py前向传播后添加 print(bbox_pred.shape) # 应为[N, 1203*4][N, 1204] ``` 2. 检查数据加载: ```python print(dataset.CLASSES[:5]) # 确认是LVIS类别 ``` **解决方案**:彻底清除旧配置缓存,重新从头训练 --- ### **5. 预训练模型选择表** | 任务类型 | 推荐预训练源 | 注意事项 | |----------|--------------|----------| | LVIS完整1203类 | LVIS官方模型 | 需确保配置文件与模型版本匹配 | | LVIS少样本学习 | COCO+LVIS联合训练模型 | 检查类别ID映射 | | 自定义小数据集 | COCO主干+随机初始化检测头 | 增大学习率(如0.02→0.1) | | 跨领域迁移(如医疗影像) | ImageNet主干+领域适配 | 建议冻结浅层网络 | --- ### **6. 高级调试技巧** ```python # 方法1:对比权重键名 checkpoint = torch.load('pretrained.pth') model_dict = model.state_dict() for k in checkpoint['state_dict']: if k not in model_dict: print(f'Extra key: {k}') # 出现则说明结构不兼容 elif model_dict[k].shape != checkpoint['state_dict'][k].shape: print(f'Shape mismatch: {k}, {model_dict[k].shape} vs {checkpoint['state_dict'][k].shape}') # 方法2:可视化初始权重 import matplotlib.pyplot as plt plt.hist(model.roi_head.bbox_head.fc_cls.weight.data.numpy().flatten()) plt.title('Classifier Weight Distribution') # 正常应为均值为0的小随机数,若全0或过大值说明初始化失败 ``` --- ### **7. 关键配置文件参数** ```python # 必须保持一致的三个参数 model = dict( roi_head=dict( bbox_head=dict(num_classes=1203) # 模型结构 ) ) data = dict( train=dict(classes=LVIS_CLASSES) # 数据类别 ) # 权重来源必须匹配前两个参数 load_from = 'path/to/lvis_compatible.pth' # 权重文件 ``` --- 通过系统性地检查预训练模型与当前任务的**结构兼容性**、**类别维度一致性**、**权重加载策略**,可有效解决因模型不匹配导致的各类问题。核心原则:**当修改类别数时,必须同步调整模型结构并谨慎处理预训练权重**。
评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小小的香辛料

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值