Stochastic FDTD
介绍:·为了有效的量化电磁场统计变化规律,蒙特卡洛时域有限差分方法(Monte Carlo-FDTD)、多项式混沌时域有限差分方法(PCM-FDTD)、随机FDTD(S-FDTD)被广泛的应用于计算随机媒质电磁波传播特性。其中,S-FDTD使用delta法对含有多个随机变量的方差项进行展开,得到场值标准方差的迭代公式,随后直接加入到FDTD的迭代中去,最终获得电磁场的均值和标准方差的结果。相比对其他两种方法,S-FDTD计算效率更快。
研究背景及目的:
1、实际电磁问题中,研究目标的电磁参数由于自身属性以及受到外部干扰因素具有不确定性,在实验和样本观察中呈现一定的统计规律,称为随机媒质。
2、随机媒质的电磁特性也是电磁场数值计算的一个重要方向。具体来说,传统的数值求解器如(FDTD、DGTD、FEM)对于模型中的不确定性参数,通常使用平均值代替,因此,在实验和数值模拟之间存在很大的误差。
重要的理论(delta方法):
1、原理:基于泰勒展开式,用近似的方法求随机变量函数的方差,这种方法称为 Delta 方法
对于随机函数f(x)在x=a处的的泰勒展开式如下:
通常近似为
假设有随机变量 X, 期望 E(X) = µ, 方差 D(X) = σ2,现运用 Delta 方法求随机变量函数Y = Y (X) 的方差。
由方差公式:
即
最后,以图该算例说明(图片摘自IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 60, NO. 7, JULY 2012):
采用S-FDTD统计人体组织电磁特性,具体设置如下:
一维代码:空间步长选为1mm,时间步长选为6.67e-4 ns,激励源采用正弦波,模拟的Skin、Fat、Muscle等组织均为54mm(与实际不符,仅模拟)。最后,采用Mur吸收边界截断计算域。
计算流程:
1、设置组织电磁参数(参考论文数据);2、计算电磁场的平均值;3、计算方差;
通过流程图可以看出,通过单次仿真就可以得到电场和磁场的统计学上的均值和方差,因此,计算效率快;
仿真结果(与蒙特卡洛方法对比)
图1. 两种方法得到的均值
图2. 两种方法得到的方差(自相关函数取1)
图3. 两种方法得到的方差(自相关函数取0.5)
目前的进度仅为前期的测试阶段,接下来更深入的了解。
【高效的随机媒质电磁统计方法----Stochastic FDTD(学习篇)】
最新推荐文章于 2025-04-28 22:16:29 发布