杂乱视频的全局最优时空重建方法解析
在计算机视觉领域,从杂乱视频中进行三维场景的重建是一个具有挑战性的任务。传统方法往往在复杂场景和动态变化面前表现不佳。本文将介绍一种全局最优的时空重建方法,它能够有效地处理杂乱背景和动态场景,为三维重建带来新的解决方案。
方法概述
该方法是基于Labatut等人工作的时空扩展,主要思想是将演化的三维表面建模为四维表面。具体步骤如下:
1. 为每个时间步生成准密集的三维点云,并将其合并为四维点云。
2. 计算四维点云的Delaunay三角剖分,构建三维+时间空间的自适应分解。
3. 将Delaunay五胞体标记为空或被占用,生成四维表面。
4. 通过与时间平面相交,获取给定时间的三维表面。
方法优势
该方法具有以下显著优势:
1. 不依赖视觉凸包
- 视频无需在受控条件下拍摄,背景可以杂乱。
- 能够处理封闭和开放场景,例如同时恢复室内场景的墙壁和家具,以及对从各个角度看到的物体进行完整重建。
2. 基于全局最优
- 具有鲁棒性,不依赖于特定的初始化。
- 利用可见性信息引导表面位置,避免最小割解为空表面,并且对异常值具有鲁棒性。
3. 利用四维表示
- 在空间和时间上进行正则化,提高对几何和可见性推理中的噪声的鲁棒性。
- 一个时间步提取的点将信息传递到周围的时间步,每个时间步获得更多细节。
- 减少合成视图中的闪烁伪影,因为连续的三维切片具有相似的几何形状和连接性。 <
订阅专栏 解锁全文
24

被折叠的 条评论
为什么被折叠?



