前言
今天看到了一个简单的Dataset类定义的函数,包括了打乱顺序,取一个batch,取多个batch,取一个batch的前n个数据以及迭代样本的所有batch功能。下将代码粘贴如下以备后续借鉴。
代码
import numpy as np
class Dataset(object):
def __init__(self, data_map, deterministic=False, shuffle=True):
# data_map是一个字典,key是数据的名字,value是数据本身,比如data_map = {"ob": ob, "ac": ac, "atarg": atarg, "vtarg": tdlamret}
self.data_map = data_map
# 这个参数是指是否是确定性的,如果是确定性的,那么每次调用next_batch的时候,都会返回相同的数据,否则每次都会返回不同的数据
self.deterministic = deterministic
# 这个参数是指是否打乱顺序,如果是True,那么每次调用next_batch的时候,都会打乱顺序
self.enable_shuffle = shuffle
# 这个参数是指数据的总数
self.n = next(iter(data_map.values())).shape[0]
# 这个参数是指当前的数据的id
self._next_id = 0
self.shuffle()
def shuffle(self):
# shuffle的意思是打乱顺序,但是这里的shuffle是打乱顺序的同时,还要保证每个key的数据是一一对应的
if self.deterministic:
return
perm = np.arange(self.n)
np.random.shuffle(perm)
for key in self.data_map:
# self.data_map[key][perm]是指把self.data_map[key]的数据按照perm的顺序打乱
self.data_map[key] = self.data_map[key][perm]
self._next_id = 0
def next_batch(self, batch_size):
# 这个函数的作用是返回一个batch的数据,比如batch_size=32,那么就返回32个数据
if self._next_id >= self.n and self.enable_shuffle:
# 如果当前的数据已经用完了,那么就重新打乱顺序
self.shuffle()
cur_id = self._next_id
cur_batch_size = min(batch_size, self.n - self._next_id)
self._next_id += cur_batch_size
# 这里的data_map是指返回的数据,比如data_map = {"ob": ob, "ac": ac, "atarg": atarg, "vtarg": tdlamret}
data_map = dict()
for key in self.data_map:
data_map[key] = self.data_map[key][cur_id:cur_id+cur_batch_size]
return data_map
def iterate_once(self, batch_size):
# 这个函数的作用是返回一个batch的数据,比如batch_size=32,那么就返回32个数据
if self.enable_shuffle: self.shuffle()
while self._next_id <= self.n - batch_size:
# yield的作用是返回一个值,但是不会结束函数,而是会继续执行函数
# self.next_batch(batch_size)是指返回一个batch的数据
yield self.next_batch(batch_size)
self._next_id = 0
def iterate_times(self, batch_size, times):
if self.enable_shuffle: self.shuffle()
for x in range(times):
yield self.next_batch(batch_size)
self._next_id = 0
def subset(self, num_elements, deterministic=True):
data_map = dict()
for key in self.data_map:
# self.data_map[key][:num_elements]是指取self.data_map[key]的前num_elements个数据
data_map[key] = self.data_map[key][:num_elements]
return Dataset(data_map, deterministic)
def iterbatches(arrays, *, num_batches=None, batch_size=None, shuffle=True, include_final_partial_batch=True):
'''
Iterate over batches of arrays, optionally shuffling and/or in parallel.
迭代样本的所有batch
iterbatches(batch_size=100, epochs=10, deterministic=False)将在10次迭代完所有的样本,每次有不同的随机顺序。
'''
assert (num_batches is None) != (batch_size is None), 'Provide num_batches or batch_size, but not both'
# map的作用是对arrays中的每一个元素都执行np.asarray,然后返回一个map对象,tuple的作用是把map对象转换成元组
arrays = tuple(map(np.asarray, arrays))
# arrays[0].shape[0]是指取arrays[0]的第一个维度的长度,比如arrays[0]的shape是(100, 10),那么arrays[0].shape[0]就是100
n = arrays[0].shape[0]
# assert的作用是判断后面的表达式是否为True,如果为False,那么就会报错,
# all的作用是判断后面的表达式是否都为True,all(a.shape[0] == n for a in arrays[1:])是指判断arrays[1:]中的每一个元素的第一个维度的长度是否都等于n
assert all(a.shape[0] == n for a in arrays[1:])
inds = np.arange(n)
# np.random.shuffle(inds)是指把inds的顺序打乱
if shuffle: np.random.shuffle(inds)
# np.arange(0, n, batch_size)是指生成一个从0到n,步长为batch_size的数组,比如n=100,batch_size=32,那么就会生成一个从0到100,步长为32的数组
sections = np.arange(0, n, batch_size)[1:] if num_batches is None else num_batches
# np.array_split(inds, sections)是指把inds按照sections的顺序分割成多个数组,比如inds=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],sections=[3, 6],
# 那么就会把inds分割成[[0, 1, 2], [3, 4, 5], [6, 7, 8, 9]]
for batch_inds in np.array_split(inds, sections):
# include_final_partial_batch是指是否包含最后一个不完整的batch,如果为True,那么就会包含最后一个不完整的batch
if include_final_partial_batch or len(batch_inds) == batch_size:
yield tuple(a[batch_inds] for a in arrays)