在现代应用中,查询分析是一项至关重要的任务,尤其是在使用大型语言模型(LLM)和相关技术时。利用过滤器,我们可以精确地提取、分类和检索信息。本篇文章将介绍如何使用LangChain库,利用Pydantic模型构建过滤器,并借助LangChain的“Translators”转换为可用于检索器的特定过滤器。
引言
在信息检索中,构建和应用有效的过滤器可以极大地提升查询的准确性和效率。通过将用户请求转换为结构化的过滤条件,我们可以让检索器更加智能地返回结果。本篇文章的目的是介绍如何使用LangChain库提供的工具来构建和转换过滤器,以便在查询分析中应用。
主要内容
1. 使用Pydantic模型表示过滤器
Pydantic模型是一个非常方便的工具,可以用于数据验证和设置。我们将使用Pydantic模型来定义我们的查询和过滤条件。
from typing import Optional
from langchain_core.pydantic_v1 import BaseModel
class Search(BaseModel):
query: str
start_year: Optional[int]
author: Optional[str]
search_query = Search(query="RAG"<