在LangChain中有效构建查询过滤器:从Pydantic到Retriever

在现代应用中,查询分析是一项至关重要的任务,尤其是在使用大型语言模型(LLM)和相关技术时。利用过滤器,我们可以精确地提取、分类和检索信息。本篇文章将介绍如何使用LangChain库,利用Pydantic模型构建过滤器,并借助LangChain的“Translators”转换为可用于检索器的特定过滤器。

引言

在信息检索中,构建和应用有效的过滤器可以极大地提升查询的准确性和效率。通过将用户请求转换为结构化的过滤条件,我们可以让检索器更加智能地返回结果。本篇文章的目的是介绍如何使用LangChain库提供的工具来构建和转换过滤器,以便在查询分析中应用。

主要内容

1. 使用Pydantic模型表示过滤器

Pydantic模型是一个非常方便的工具,可以用于数据验证和设置。我们将使用Pydantic模型来定义我们的查询和过滤条件。

from typing import Optional
from langchain_core.pydantic_v1 import BaseModel

class Search(BaseModel):
    query: str
    start_year: Optional[int]
    author: Optional[str]

search_query = Search(query="RAG"<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值