机器学习
橘子果酱CV
这个作者很懒,什么都没留下…
展开
-
机器学习——逻辑回归
机器学习——逻辑回归(一)逻辑回归原理推导(二)逻辑回归代码推导(三)逻辑回归实验分析(四)逻辑回归作业(一)逻辑回归原理推导从二元的分类问题开始讨论,将因变量(dependent variable)可能属于的两个类分别称为负向类(negative class)和正向类(positive class),则因变量 y∈0,1y\in 0,1y∈0,1,其中 0 表示负向类,1 表示正向类。逻辑...原创 2019-07-30 10:04:24 · 1319 阅读 · 0 评论 -
机器学习——推荐系统
机器学习——推荐系统(一)推荐系统原理分析(二)餐馆菜肴推荐系统(三)音乐推荐系统(一)推荐系统原理分析人能够对一些事物的重要特征做抽象提取,奇异值分解(Singular Value Decomposition,SVD正是机器抽象提取一些事物重要特征的方法。利用SVD,可使用小得多的数据集来表示原始数据集,这样会去除噪声数据和冗余信息。最早的SVD应用之一是信息检索。将利用SVD的方法称为隐...原创 2019-08-10 21:50:00 · 1381 阅读 · 5 评论 -
机器学习——关联规则
机器学习——关联规则(一)关联规则原理(二)关联规则代码实现(一)关联规则原理在美国,一些年轻的父亲下班后经常要到超市去买婴儿尿布,超市也因此发现了一个规律,在购买婴儿尿布的年轻父亲们中,有30%~40%的人同时要买一些啤酒。超市随后调整了货架的摆放,把尿布和啤酒放在一起,明显增加了销售额。若两个或多个变量的取值之间存在某种规律性,就称为关联。关联规则是寻找在同一个事件中出现的不同项的相关...原创 2019-08-10 21:49:38 · 5415 阅读 · 0 评论 -
机器学习——线性回归(数学原理推导+Python代码实现+模型评估+实验分析)
机器学习——线性回归(一)线性回归原理推导1.1 模型描述1.2 梯度下降(二)线性回归代码实现(一)线性回归原理推导线性回归:用一个直线较为精确地描述数据之间的关系。这样当出现新的数据的时候,就能够预测出一个简单的值。1.1 模型描述线性回归按变量数量的多少可以分为:一元线性回归(简单线性回归)和多元线性回归。一元线性回归(有一个自变量),模型可以表示如下:y=θ0+θ1x1+εy=...原创 2019-07-28 08:31:11 · 3489 阅读 · 0 评论 -
机器学习——决策树
机器学习——决策树(一)决策树的构造3.1 信息增益1.2 划分数据集1.3 递归构建决策树(二)在 Python 中使用 Matplotlib 注解绘制树形图2.1 Matplotlib 注解2.2构造注解树(三)测试和存储分类器3.1 测试算法:使用决策树执行分类3.2 实用算法:决策树的存储(四)示例:使用决策树预测隐形眼镜类型(一)决策树的构造决策树(decision tree)是一类...原创 2019-08-01 09:00:32 · 971 阅读 · 0 评论 -
机器学习——集成算法
机器学习——集成算法(一)集成算法原理1.1 Bagging模型1.2 Boosting模型(二)集成算法实验分析2.1 硬投票和软投票效果2.2 OOB袋外数据的作用2.3 特征重要性2.4 Boosting-提升策略(一)集成算法原理目的:让机器学习效果更好,单个不行,集成走起。Bagging:训练多个分类器取平均f(x)=1/M∑m=1Mfm(x)f(x)=1/M\sum_{m=1...原创 2019-08-03 08:56:06 · 7575 阅读 · 2 评论 -
机器学习——神经网络
机器学习——神经网络(一)深度学习算法原理1.1 深度学习要解决的问题1.2 深度学习应用领域2.3 计算机视觉任务(一)深度学习算法原理1.1 深度学习要解决的问题机器学习流程:数据获取特征工程(最核心的一部分)建立模型评估与应用特征工程的作用:数据特征决定了模型的上限。预处理和特征提取是最核心的。算法与参数选择决定了如何逼近这个上限。传统特征的提取方法:为...原创 2019-08-16 08:39:44 · 836 阅读 · 3 评论