机器学习——逻辑回归

本文深入探讨逻辑回归,从原理推导开始,解释Sigmoid函数在分类中的作用,接着通过代码实现逻辑回归,展示了如何处理线性和非线性问题。实验分析部分,讨论了不同梯度下降策略的影响,以及在异常检测场景的应用,说明了正则化的重要性。文章还包含了逻辑回归在学生录取和芯片质量检测问题上的应用案例。
摘要由CSDN通过智能技术生成

(一)逻辑回归原理推导

从二元的分类问题开始讨论,将因变量(dependent variable)可能属于的两个类分别称为负向类(negative class)和正向类(positive class),则因变量 y ∈ 0 , 1 y\in 0,1 y0,1,其中 0 表示负向类,1 表示正向类。

逻辑回归中选择对数几率函数(logistic function)作为激活函数,对数几率函数是Sigmoid函数(形状为S的函数)的重要代表。

g ( z ) = 1 1 + e − z g(z)=\frac{1}{1+e^{-z}} g(z)=1+ez1

自变量取值为任意实数,值域[0,1]

解释:将任意的输入映射到[0,1]区间,在线性回归中可以得到一个预测值,再将该值映射到Sigmoid函数中,这样就完成了由值到概率的转换,也就是分类任务。

预测函数

h θ ( x ) = g ( θ T x ) = 1 1 + e − θ T x h_{\theta}(x)=g(\theta^{T}x)=\frac{1}{1+e^{-\theta ^{T}x}} hθ(x)=g(θTx)=1+eθTx1

其中 θ 0 + θ 1 x 1 + . . . + θ n x n = ∑ i = 1 n θ i x i = θ T x \theta _{0}+\theta _{1}x_{1}+...+\theta _{n}x_{n}=\sum_{i=1}^{n}\theta _{i}x_{i}=\theta ^{T}x θ0+θ1x1+...+θnxn=i=1nθixi=θTx

在逻辑回归中,预测

h θ ( x ) h_{\theta}(x) hθ(x) >= 0.5时,预测 ? = 1。
h θ ( x ) h_{\theta}(x) hθ(x) < 0.5时,预测 ? = 0 。

根据上面绘制出的 S 形函数图像,我们知道当 :
z z z = 0 时 g ( z ) g(z) g(z) = 0.5
z z z> 0 时 g ( z ) g(z) g(z)> 0.5
z z z< 0 时 g ( z ) g(z) g(z) < 0.5

z = θ T x z=\theta^{T}x z=θTx ,即:
θ T x \theta^{T}x θTx >= 0 时,预测 ? = 1
θ T x \theta^{T}x θTx < 0 时,预测 ? = 0

判定边界(对不同类别的数据分割的边界,边界的两旁应该是不同类别的数据),现在假设我们有一个模型:

并且参数? 是向量[-3 1 1]。 则当 − 3 + x 1 + x 2 ≥ 0 -3+x_{1}+x_{2}\geq 0 3+x1+x20,即 x 1 + x 2 ≥ 3 x_{1}+x_{2}\geq 3 x1+x23时,模型将预测 ? =1。 我们可以绘制直线 x 1 + x 2 ≥ 3 x_{1}+x_{2}\geq 3 x1+x2

  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值