CVPR 2020——PointGroup: Dual-Set Point Grouping for 3D Instance Segmentation

论文:https://arxiv.org/abs/2004.01658
源码:https://github.com/Jia-Research-Lab/PointGroup

Abstract

  • 介绍了PointGroup,这是一种新的端到端自下而上的体系结构,着重关注于通过探索对象之间的空隙空间更好地对点进行分组。
  • 设计了一个两分支网络来提取点特征并预测语义标签和偏移量,以将每个点移向其各自的实例质心。
  • 后接一个聚类,以利用原始点和偏移位移点坐标集的优势。
  • 制定ScoreNet来评估候选实例,然后使用非最大抑制(NMS)来删除重复项。
  • 在两个数据集ScanNet v2和S3DIS上进行了实验,获得最高的性能,分别为63.6%和64.0%。

(一) Introduction

目前存在的困难:

  • 实例分割不仅需要预测语义标签,而且还需要预测场景中每个对象的实例ID。
  • 卷积神经网络提高了二维实例分割的性能。但是,在无序和无结构的3D点云的情况下,不能将2D方法直接扩展到3D点,并使3D点仍然非常具有挑战性。

应用:

  • 在自动驾驶,机器人导航等在室外和室内环境中的有潜在应用。

改进: 通过探索3D对象之间的空隙空间以及语义信息来更好地分割,从而解决了具有挑战性的3D点云实例分割任务。

流程:

  1. 利用语义分割骨架来提取描述性特征并预测每个点的语义标签。
  2. 采用偏移分支来学习相对偏移,以将每个点移至其各自的ground-truth实心质心。通过这种方式,可以将同一对象实例的点移向同一质心并将其收集得更近,从而可以更好地将点分组为对象并分离同一类别的附近对象。
  3. 借助预测的语义标签和偏移量,采用一种简单而有效的算法将点分组为聚类。
  4. 对于每个点,以其坐标为参考,将其与相同标签的附近点分组,然后逐步扩展该组。
  5. 在两个单独的通道中考虑了两个坐标集–原始点位置和那些偏移了预测​​偏移的位置。此过程为 “Dual-Set Point Grouping.”。 两种结果互为补充,以实现更好的性能。
  6. 设计了ScoreNet来评估和选择候选组。
  7. 最后采用非最大抑制来消除重复的预测。

贡献:

  • 提出了一个名为PointGroup的自底向上3D实例分割框架,以处理具有挑战性的3D实例分割任务。
  • 提出一种基于双坐标集(即原始和移动集)的点聚类方法。与新的ScoreNet一起,可以更好地分割对象实例。
  • 所提出的方法在各种具有挑战性的数据集上均达到了最新水平,证明了其有效性和普遍性。

(二) Related Work

看论文吧~~

(三) Our Method

3.1. Architecture Overview

为了获得3D对象的实例级分割标签,考虑两个问题:

  1. 首先是分开将3D空间中的内容分成单个对象。
  2. 第二个是确定每个对象的语义标签。

与2D图像不同,在3D场景中不存在视图遮挡问题,散布在3D中的对象通常被空白空间自然分隔。 因此,利用3D对象的这些特征,根据语义信息将3D内容分组为对象实例。

图释:

  • 网络体系结构,该体系结构包含三个主要组件,即(a)骨干网,(b)聚类部分和(c)ScoreNet ;
  • 骨干网的输入(a)是一个 N N N点的点集 P P P。每个点都有一个颜色 f i = ( r i , g i , b i ) f_{i}=\left ( r_{i},g_{i},b_{i}\right ) fi=(ri,gi,bi)和3D坐标 p i = ( x i , y i , z i ) p_{i}=\left ( x_{i},y_{i},z_{i}\right ) pi=(xi,yi,zi),其中 i ∈ { 1 , . . . , N } i\in \left \{1,...,N\right \} i{ 1,...,N}
  • 主干网络提取每个点的特征 F i F_i Fi F = { F i } ∈ R N × K F=\left \{F_i\right \}\in R^{N\times K} F={ Fi}RN×K,K是通道数。
  • 将F馈入两个分支,一个分支用于语义分割,另一个分支用于预测每点偏移向量,使用两个分支生成偏移向量 O = { o i } O=\left \{o_{i}\right \} O={ oi}和语义标签 S = { s i } S=\left \{s_{i}\right \} S={ si} o i = ( △ x i , △ y i , △ z i ) o_{i}=(\triangle x_{i},\triangle y_{i},\triangle z_{i}) oi=(xiyizi)
  • 获取语​​义标签后,根据对象之间的空白空间将点分组为实例簇。将彼此接近的点归为同一聚类(如果它们具有相同的语义标签)。(直接基于点坐标集 P = { p i } P = \left \{p_i\right \} P={ pi}进行聚类可能无法分离在3D空间中彼此靠近的相同类别的对象并对其进行错误分组,例如,两张并排悬挂的图片墙)。
  • 将学习到的偏移 o i o_{i} oi去位移点 i i i朝向其各自的实例质心,并获得位移坐标 q i = p i + o i ∈ R 3 q_i = p_i +o_i∈R^3 qi=pi+oiR3
  • 对于与 p i p_i pi不同的属于同一对象实例的点,偏移的坐标 q i q_i qi围绕同一质心。因此,通过基于移动的坐标集 Q = { q i } Q = \left \{q_i\right \} Q={ qi}进行聚类,即使它们具有相同的语义标签,也可以更好地分离附近的对象。
  • 但是,对于靠近对象边界的点,预测的偏移可能不准确。聚类算法使用“dual”点坐标集,即原始坐标 P P P和移动坐标 Q Q Q P P P上进行聚类可能会将附近的同一类别的对象误分组,而在 Q Q Q上进行聚类则不会出现此问题,但可能无法处理大对象的边界点。
  • 将聚类结果 C C C表示为 C p = { C 1 P , . . . , C M p p } C^{p}=\left \{C_{1}^{P},...,C_{M_{p}}^{p}\right \} Cp={ C1P,...,CMpp} C q = { C 1 q , . . . , C M q q } C^{q}=\left \{C_{1}^{q},...,C_{M_{q}}^{q}\right \} Cq={ C1q,...,CMqq}的并集,分别是基于 P P P Q Q Q发现的聚类。 M p M_p Mp, M q M_q Mq分别表示 C p C_p Cp C q C_q Cq中的簇数, M = M p + M q M = M_p+M_q M=Mp+M
  • 5
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 13
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值