姿态结算中旋转计算的基础

如此长的标题也是为难我了……

  • 假设由运载体(比如手机)确定的坐标系为 b,惯导系统所采用的参考坐标为 n,则由 b 系到 n 系的坐标变换矩阵记为 Cnb 。如果存在 b 系内的一点 rb ,则其在 n 系内的坐标 rn=Cnbrb (* 号代表矩阵乘法,下同)。
  • 假如中间存在多次旋转,比如 b -> 1 -> 2 -> n,则 Cnb=Cn2C21C1b
  • 四元数是用来表示三维空间内的旋转的一种方法,可以参考 【Unity技巧】四元数(Quaternion)和旋转彻底搞懂四元数
  • 如果用四元数来表示 b -> n 的旋转, rn=QrbQ (* 号代表四元数乘法,下同)。特别注意,其中 Q 表示 n -> b 的旋转四元数,即 Q=Qbn
  • 如果经历 b -> 1 -> 2 -> n 的旋转,则所求四元数为 Qbn=Q1bQ21Qn2
  • 另外,需要注意的是,描述旋转的四元数是规范化四元数,即 ||Q||=1 ,但是由于计算误差等因素,计算过程中四元数会逐渐失去规范化特征,因此若干次更新后,需要对四元数做规范化处理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值