姿态解算原理(一)——旋转矩阵

像我们常见的MPU6050、MPU9250等等都是一种捷联式的惯性元件,还是一种低成本的,还有一种是平台式的惯性导航,不过我们能够用得起的就是低成本的MEMS惯性元件,本文的内容是姿态解算的原理
进入正题,姿态解算原理很简单,我们需要一种传感器感知刚体的旋转运动,而陀螺仪就是一种这样的元件,它用来感知惯性空间的角速度,有了角速度自然就可以积分得到角度,一维的就是这样,我们直接积分就好了,而二维的、三维的我们同样可以积分,不过这就涉及到矩阵运算了。
下面展示的是旋转矩阵进行坐标转换,假设我们在三维坐标系下旋转了绕Z轴旋转了一个角度

原来是X1-Y1-Z1坐标系,绕Z轴旋转α角度之后就是X2-Y2-Z2坐标系了,假设在原来的坐标系上有一个向量OF,我们怎么来描述OF经过旋转之后的变化呢?我们就可以通过旋转矩阵来实现,其实就是对向量进行了线性变换,得到了一个新的向量,模不变,但是基底变了
在这里插入图片描述
如上图,通过计算,高中的数学基础就可以得到,我们可以得到F在两个坐标系下之间的关系,写成矩阵形式:
在这里插入图片描述
这就是绕z轴旋转α的旋转矩阵,可以看出是正交矩阵,因此它的逆就是它的转置,如果我们再分别得到绕X、Y轴的姿态矩阵,就可以得到绕三轴任意旋转的姿态矩阵了,其中绕X轴的为俯仰角pitch,写为θ,绕Y轴的为滚转角roll,写作γ,绕Z轴的为航向角yaw,写作φ

在这里插入图片描述
写出来就是这样,之后我们再将三个矩阵相乘,得到姿态矩阵在这里插入图片描述

有了姿态矩阵,我们可以看出,姿态矩阵是用三个姿态角表示的,通过姿态矩阵,我们可以反求出姿态角

### 方向余弦法原理 方向余弦矩阵种用于描述刚体在三维空间中的旋转状态的方法。该方法通过构建个3×3的正交矩阵来表示物体坐标系相对于惯性坐标系的姿态变化[^1]。 具体来说,假设存在两个直角坐标系A和B,其中A代表固定的世界坐标系,而B则是随物体移动并保持与其固连的身体坐标系。此时可以定义三个单位矢量分别沿各自坐标指向: - 对于世界坐标系\( \{i_A,j_A,k_A\} \) - 对应身体坐标系 \( \{i_B,j_B,k_B\} \) 那么从A到B之间的转换关系就可以由如下形式的方向余弦矩阵C给出: \[ C = \begin{bmatrix} c_{xx}& c_{xy}& c_{xz}\\ c_{yx}& c_{yy}& c_{yz}\\ c_{zx}& c_{zy}& c_{zz} \end{bmatrix}\] 这里每个元素\( c_{ij}(i,x,y,z;j=x,y,z)\),即为对应基底之间夹角的余弦值。因此整个变换过程实际上就是求取这九个参数的过程[^2]。 ### 应用场景 方向余弦矩阵被广泛应用在航空航海导航领域内,尤其是在早期计机资源受限的情况下更为常见。然而随着技术进步以及对于实时性和精度要求不断提高,这种方法逐渐暴露出些缺点——比如当涉及到较大角度转动时容易出现奇异点问题(类似于欧拉角所遭遇的万向锁现象),而且存储开销大、计复杂度较高也限制了它的发展前景。 尽管如此,在某些特定场合下仍然可以看到它的身影,例如: - **静态或准静态环境下的姿态估计** - **多传感器融合框架中与其他表征方式相互校验** ### 计方法 为了获得方向余弦矩阵的具体数值表达式,通常需要先确定两套不同参照系间各线间的相对位置关系。般而言,可以通过测量得到系列已知方位上的数据样本集,并利用最小二乘拟合或其他优化手段找到最优路径从而完成建模工作。 另外种常用的方式是从其他更高效的数学模型出发间接推导而来,如四元数或者罗德里格斯公式等。这些途径往往能够简化最终结果的形式结构,进而提高实际编程实现过程中代码运行效率的同时保证足够的准确性[^3]。 ```matlab % MATLAB伪代码示例:创建理想情况下的DCM function DCM = createIdealDCM(roll, pitch, yaw) % 将输入的角度转化为弧度制 roll_rad = deg2rad(roll); pitch_rad = deg2rad(pitch); yaw_rad = deg2rad(yaw); % 构造单旋转矩阵 R_x = [1 0 0; ... 0 cos(roll_rad) sin(roll_rad);... 0 -sin(roll_rad) cos(roll_rad)]; R_y = [cos(pitch_rad) 0 -sin(pitch_rad); ... 0 1 0 ; ... sin(pitch_rad) 0 cos(pitch_rad)]; R_z = [cos(yaw_rad) sin(yaw_rad) 0; ... -sin(yaw_rad) cos(yaw_rad) 0; ... 0 0 1]; % 合成总的DCM DCM = R_z * R_y * R_x; end ```
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值