第二章 z变换

第二章学习目标

掌握z变换及其收敛域,掌握因果序列的概念判断方法

运用任意方法求z反变换

理解z变换的主要性质

理解z变换与Laplace/Fourier变换的关系

掌握序列的Fourier变换理解其对称性质

掌握离散系统的系统函数和频率响应系统函数与差分方程的互求因果/稳定系统的收敛域

时域分析方法

变换域分析方法:

连续时间信号与系统:Laplace变换、Fourier变换

离散时间信号与系统:z变换、Fourier变换

一、z变换的定义及收敛域

1、z变换的定义

2、z变换的收敛域与零极点

对于任意给定序列x(n),使其z变换X(z)收敛的所有z值的集合称为X(z)的收敛域

讨论不同的序列

1)有限长序列

2)右边序列

因果序列(n=0时的右边序列)

第三点是因果序列的特征

3)左边序列

4)双边序列

给定z变换X(z)不能唯一地确定一个序列,只有同时给出收敛域才能唯一确定

X(z)在收敛域内解析,不能有极点,故:

右边序列的z变换收敛域一定在模最大的有限极点所在圆之外

左边序列的z变换收敛域一定在模最小的有限极点所在圆之内

 

数字图像处理中的Z变换是一种用于表示和分析离散信号系统的重要工具。第二章中介绍了Z变换的结构导图,用于说明Z变换的不同部分和它们之间的关系。 Z变换结构导图主要由四个组成部分组成:输入序列、系统函数、输出序列和单位延迟单元。输入序列是指需要进行Z变换的离散信号的序列,它可以是离散时间信号或者离散空间信号。系统函数是描述系统输出和输入之间关系的数学函数,它表示了离散系统对输入信号做出的响应。输出序列是经过系统函数处理后的结果序列,它表示了系统对输入信号的影响。单位延迟单元是指将输入序列从一个时间或空间位置移动到下一个时间或空间位置的操作,它可以用于模拟信号传播的时间或空间延迟。 在Z变换结构导图中,输入序列和单位延迟单元通过系统函数连接到输出序列。通过改变系统函数的形式和参数,可以实现不同类型的数字信号处理操作,例如滤波、变换等。Z变换结构导图的目的是帮助人们理解Z变换在数字信号处理中的应用,以及各部分之间的相互作用。 总而言之,Z变换结构导图是数字图像处理中用于表示和分析离散信号系统的工具,它由输入序列、系统函数、输出序列和单位延迟单元组成。通过改变系统函数的形式和参数,可以实现不同类型的数字信号处理操作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Clark-dj

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值