第二章学习目标
掌握z变换及其收敛域,掌握因果序列的概念及判断方法
会运用任意方法求z反变换
理解z变换的主要性质
理解z变换与Laplace/Fourier变换的关系
掌握序列的Fourier变换并理解其对称性质
掌握离散系统的系统函数和频率响应,系统函数与差分方程的互求,因果/稳定系统的收敛域
时域分析方法
变换域分析方法:
连续时间信号与系统:Laplace变换、Fourier变换
离散时间信号与系统:z变换、Fourier变换
一、z变换的定义及收敛域
1、z变换的定义
2、z变换的收敛域与零极点
对于任意给定序列x(n),使其z变换X(z)收敛的所有z值的集合称为X(z)的收敛域
讨论不同的序列
1)有限长序列
2)右边序列
因果序列(n=0时的右边序列)
第三点是因果序列的特征
3)左边序列
4)双边序列
给定z变换X(z)不能唯一地确定一个序列,只有同时给出收敛域才能唯一确定。
X(z)在收敛域内解析,不能有极点,故:
右边序列的z变换收敛域一定在模最大的有限极点所在圆之外
左边序列的z变换收敛域一定在模最小的有限极点所在圆之内