理论
OpenCV提供三种类型的梯度滤波器或高通滤波器,即Sobel,Scharr和Laplacian。我们将看到他们每一种。
1. Sobel 和 Scharr 算子
- Sobel算子是高斯平滑加微分运算的联合运算,因此它更抗噪声。
- 逆可以指定要采用的导数方向,垂直或水平(分别通过参数yorder和xorder)。
- 逆还可以通过参数ksize指定内核的大小。
- 如果
ksize = -1
,则使用3x3 Scharr滤波器,比3x3 Sobel滤波器具有更好的结果。请参阅文档以了解所使用的内核。
2. Laplacian 算子
代码
下面的代码显示了单个图表中的所有算子。所有内核都是
5x5
大小。输出图像的深度通过-1
得到结果的np.uint8
型。import numpy as np import cv2 as cv from matplotlib import pyplot as plt img = cv.imread('dave.jpg',0) laplacian = cv.Laplacian(img,cv.CV_64F) sobelx = cv.Sobel(img,cv.CV_64F,1,0,ksize=5) sobely = cv.Sobel(img,cv.CV_64F,0,1,ksize=5) plt.subplot(2,2,1),plt.imshow(img,cmap = 'gray') plt.title('Original'), plt.xticks([]), plt.yticks([]) plt.subplot(2,2,2),plt.imshow(laplacian,cmap = 'gray') plt.title('Laplacian'), plt.xticks([]), plt.yticks([]) plt.subplot(2,2,3),plt.imshow(sobelx,cmap = 'gray') plt.title('Sobel X'), plt.xticks([]), plt.yticks([]) plt.subplot(2,2,4),plt.imshow(sobely,cmap = 'gray') plt.title('Sobel Y'), plt.xticks([]), plt.yticks([]) plt.show()
一个重要事项
在我们的最后一个示例中,输出数据类型为
cv.CV_8U
或np.uint8
。但这有一个小问题。黑色到白色的过渡被视为正斜率(具有正值),而白色到黑色的过渡被视为负斜率(具有负值)。因此,当您将数据转换为np.uint8时,所有负斜率均设为零。简而言之,您会错过这一边缘信息。如果要检测两个边缘,更好的选择是将输出数据类型保留为更高的形式,例如
cv.CV_16S
,cv.CV_64F
等,取其绝对值,然后转换回cv.CV_8U
。 下面的代码演示了用于水平Sobel滤波器和结果差异的此过程。import numpy as np import cv2 as cv from matplotlib import pyplot as plt img = cv.imread('box.png',0) # Output dtype = cv.CV_8U sobelx8u = cv.Sobel(img,cv.CV_8U,1,0,ksize=5) # Output dtype = cv.CV_64F. Then take its absolute and convert to cv.CV_8U sobelx64f = cv.Sobel(img,cv.CV_64F,1,0,ksize=5) abs_sobel64f = np.absolute(sobelx64f) sobel_8u = np.uint8(abs_sobel64f) plt.subplot(1,3,1),plt.imshow(img,cmap = 'gray') plt.title('Original'), plt.xticks([]), plt.yticks([]) plt.subplot(1,3,2),plt.imshow(sobelx8u,cmap = 'gray') plt.title('Sobel CV_8U'), plt.xticks([]), plt.yticks([]) plt.subplot(1,3,3),plt.imshow(sobel_8u,cmap = 'gray') plt.title('Sobel abs(CV_64F)'), plt.xticks([]), plt.yticks([]) plt.show()
查看以下结果: