1. 用户画像简介
用户画像(User Profile) 是指通过用户行为、人口统计信息、兴趣偏好等数据构建用户的多维信息标签,并在推荐系统中用于个性化推荐。用户画像可以细分为:
-
静态画像(年龄、性别、职业、地区)
-
动态画像(浏览、购买、收藏、点击、评分等行为)
-
社会关系画像(社交网络、好友关系)
推荐系统利用用户画像可以精准捕捉用户需求,提高推荐质量,解决数据稀疏、冷启动等问题。
2. 用户画像在推荐系统中的作用
-
精准建模用户兴趣
-
分析用户的历史行为,挖掘长期和短期兴趣变化。
-
-
提高推荐系统的效果
-
个性化推荐,提高用户点击率、转化率。
-
-
缓解冷启动问题
-
对于新用户,可以利用相似用户的画像进行推荐。
-
-
提升召回和排序质量
-
结合用户兴趣和商品特征,优化召回和排序。
-
3. 用户画像构建方法
用户画像主要从以下几个维度构建:
(1) 人口统计学信息(Demographic Data)
-
年龄、性别、职业、学历、收入水平
-
主要数据来源:注册信息、调查问卷