正交分解 令W是欧式空间V的一个有限维子空间, 则 V=W⊕W⊥V = W \oplus W^{\bot}V=W⊕W⊥ 证明 当W = {0}时, W⊥=VW^{\bot} = VW⊥=V, 显然V=W⊕W⊥V = W \oplus W^{\bot}V=W⊕W⊥. 当W≠{ 0}W \neq \{0\}W={ 0}时, 令r1,r2,...,rsr_1,r_2,...,r_sr