在贝祖定理中给出了以下定义
对于整数a和b及其最大公约数c,可以得出对于任意的整数x和y使得ax+by等于c的整数倍,且存在x和y使得ax+by等于c。当a和b互质时存在唯一的一组x,y使ax+by=1;
不难看出 贝祖定理和最大公约数有关,而最大公约数也就和欧几里得算法(辗转相除法),我们也就可以用辗转相除法来证明贝祖定理
证明分两种情况
第一种情况:a与b当中有存在一个数为零时
不妨设a为零,那么a与b的最大公约数c也就为b,不难得出ax+by=c的整数倍
第二种情况:a与b都不为零时
我们需要证明ax+by=kc(k为任意整数)
即证a*(x/k)+b*(y/k)=c 因为这里x,y,k都为任意整数 那么x/k仍然包括任意整数x的范围所以 原式子所表示的意义不改变 所以要证a*(x/k)+b*(y/k)=c 即证a*x1+b*y1=c 要证a*x1+b*y1=c 即证(a/c)*x1+(b/c)*y1=1 此时因为a与b也是任意整数所以 a/c仍然包括任意整数a的范围 所以原式子所表示的意义不改变 所以要证 (a/c)*x1+(b/c)*y1=1 即证a1*x1+b1*y1=1
所以
要证ax+by=kc
即证a*(x/k)+b*(y/k)=c
即证a*x1+b*y1=c
即证(a/c)*x1+(b/c)*y1=1
即证a1*x1+b1*y1=1
注意 因为c为a与b的最大公约数,所以a/c与b/c互质,也就是a1与b1互质
到这一步就需要欧几里得算法了
假设 a1/b1=q1余p1;0<=p1<b1;
// a1=q1*b1+p1 a1/b1=q1+p1/b1 因为b1为质数,且p1<b1,所以p1与b1互质 此时p1与b1还可以传递到下一个式子b1/p1=q2余p2 依次类推 可以得到p1与p2互质 直到p(n-2)与p(n-1)互质
b1/p1=q2余p2;0<=p2<p1;
p1/p2=q3余p3;0<=p3<p2;
......
......
......
p(n-4)/p(n-3)=q(n-2)余p(n-2);0<=p(n-2)<p(n-3);
p(n-3)/p(n-2)=q(n-1)余p(n-1);0<=p(n-1)<p(n-2);
p(n-2)/(p(n-1)=qn余pn;0<=pn<p(n-1);
我们可以得出p1到pn是依次递减的。
而且因为欧几里得算法直到pn结束 所以pn=0 这一点可以自己举例子算出 辗转相除法一直除到最后余数一定为零不然会接着除下去。
那么得出p(n-2)/p(n-1)=qn 因为p(n-2)与p(n-1)互质 此时我们不难得出p(n-1)等于1因为p(n-2)与p(n-1)的最大公约数为1且p(n-2)=qn*p(n-1) 所以qn*p(n-1)与p(n-1)的最大公约数为1所以p(n-1)等于1
此时我们再逆序往上分析
p(n-3)=q(n-1)*p(n-2)+p(n-1)也就是p(n-3)=q(n-1)*p(n-2)+1也就是p(n-3)-q(n-1)*p(n-2)=1①这是p(n-3)*x+p(n-2)*y=1的形式
再往上分析
p(n-4)-p(n-3)*q(n-2)=p(n-2)②
将②带入到①当中可以得到p(n-3)(1+q(n-1)*q(n-2))-p(n-4)*q(n-1)=1这也是p(n-3)*x+p(n-4)*y=1的形式
我们依次网上分析可以得到p(n-5)与p(n-4)的关系直到a1与b1的关系是a1*x+b1*y=1
证毕
我是笨蛋