贝祖定理的证明总结

根据欧几里得算法已知
gcd(r1,r2)=rn
r1=i1r2+r3
r2=i2
r3+r4

r(n-1)=in*r(n)+r(n+1) (其中 r(n+1)==0)

显然可以将后式套入前式
比如 r4=r2-i2r3=r2-i2(r1-i1r2)
整理一下r4=(1+i2
i1)r2-i2r1
以此类推直到r(n+1)==0 项
此时 rn= s
r2-t*r1

则得出贝祖定理。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值