贝祖定理及其逆定理的几种证明


前言

第一次写CSDN的博客,因为我是学数学的,也学一些代码但是不多,所以文章可能更多的是和数学有关的,也许以后会有一些和算法有关的。这次重读数学分析时,又注意了一遍开头讲述的实数域的东西,因为后面就要涉及到数列,说到数列就要提到整数和数学归纳法,整数论里很基础的东西就是因数倍数的关系,说到这些就不能不提到贝祖定理,虽然说到这里和数学分析的关系疏远了很多,不过这次的主题是贝祖定理。


贝祖定理

为了方便,我们令    a    \;a\; a    b    \;b\; b是正整数, a    a\; a    b    \;b\; b有公因数   d \ d  d,则贝祖定理即是说,存在整数 x x x y y y(一般为一个正数一个负数)使得   a x + b y = d \ ax+by=d  ax+by=d。当    a    \;a\; a    b    \;b\; b是负数的时候很容易用正数的结论证明出来,如果有一个是    0    \;0\; 0则显然成立。

贝祖定理的证明

1.整除方法

我们考虑    a    \;a\; a    2 a    \;2a\; 2a    3 a    \;3a\; 3a    …    \;\dots\;    b d a    \;\frac{b}{d}a\; dba这一共    b d    \;\frac{b}{d}\; db个数除以    b    \;b\; b的余数,因为    d    \;d\; d    a    \;a\; a    b    \;b\; b的最大公因数,所以任意    a    \;a\; a的整数倍除以    b    \;b\; b的余数为    d    \;d\; d的倍数,所以上面这    b d    \;\frac{b}{d}\; db个余数都是    d    \;d\; d的倍数,而且没有任何两个是相等的。可以用反证法说明这一点,如果有两个是相等的,设为    i a    \;ia\; ia    j a    \;ja\; ja相等,则说明    b    \;b\; b整除    ( j − i ) a    \;(j-i)a\; (ji)a,进而说明    b d    \;\frac{b}{d}\; db整除    ( j − i )    \;(j-i)\; (ji)。由于    i    \;i\; i    j    \;j\; j都是小于    b d    \;\frac{b}{d}\; db的,产生了矛盾,所以不能有两个相等的。又因为任意    a    \;a\; a的整数倍除以    b    \;b\; b的余数为    d    \;d\; d的倍数,小于    b    \;b\; b    d    \;d\; d的倍数一共只有    b d    \;\frac{b}{d}\; db个,所以上面那    b d    \;\frac{b}{d}\; db个余数就是    0 \;0 0    d    \;d\; d    2 d    \;2d\; 2d    …    \;\dots\;    b − d    \;b-d\; bd的一个排列。从而存在    i a    \;ia\; ia满足它除以    b    \;b\; b的余数是    d \;d d,又设此时的商是    y \;y y,则有    i a − y b = d    \;ia-yb=d\; iayb=d,至此即证。

2.辗转相减法

我们定义以下流程:
第一次迭代:
如果    a ≥ b    \;a\ge b\; ab,则令    a 1 = a − b    \;a_1=a-b\; a1=ab    b 1 = b    \;b_1=b\; b1=b
如果    a < b    \;a< b\; a<b,则令    a 1 = b − a    \;a_1=b-a\; a1=ba    b 1 = a    \;b_1=a\; b1=a
第二次迭代:
如果    a 1 ≥ b 1    \;a_1\ge b_1\; a1b1,则令    a 2 = a 1 − b 1    \;a_2=a_1-b_1\; a2=a1b1    b 2 = b 1    \;b_2=b_1\; b2=b1
如果    a 1 < b 1    \;a_1< b_1\; a1<b1,则令    a 2 = b 1 − a 1    \;a_2=b_1-a_1\; a2=b1a1    b 2 = a 1    \;b_2=a_1\; b2=a1
第三次迭代:
… … \dots\dots
如此一直迭代,直到    a i    \;a_i\; ai    b i    \;b_i\; bi中有一个是 0 0 0 则停止。
因为    a i    \;a_i\; ai是随着迭代进行不断减小的,由于    a    \;a\; a    b    \;b\; b的有限性,所以经过有限次的迭代最终总能终止。另一方面,设    d    \;d\; d    a    \;a\; a    b    \;b\; b的最大公因数,则对于任意的    a i    \;a_i\; ai    b i    \;b_i\; bi都是被    d    \;d\; d整除的。而最后假设    a k    \;a_k\; ak    0    \;0\; 0然后停止迭代了,则说明    a k − 1 = b k − 1 ≠ 0    \;a_{k-1}=b_{k-1}\not=0\; ak1=bk1=0,此时逆着推回去很容易证明    b k − 1    \;b_{k-1}\; bk1整除任意的    a i    \;a_i\; ai    b i    \;b_i\; bi,于是    b k − 1    \;b_{k-1}\; bk1    a    \;a\; a    b    \;b\; b的公因数。综上可以知道    b k − 1    \;b_{k-1}\; bk1    a    \;a\; a    b    \;b\; b的最大公因数,这也即求最大公因数的一种方法。依然是吧以上的多次迭代的式子逆推回去,就可以得到用    a    \;a\; a    b    \;b\; b的线性组合表示的    d    \;d\; d

3.归纳法

我们假设    a + b ≤ k    \;a+b\le k\; a+bk时是成立的,并以此证明对于    a + b = k + 1    \;a+b=k+1\; a+b=k+1时是成立的。
首先对于    a + b = 2    \;a+b=2\; a+b=2时,    a = 1    \;a=1\; a=1    b = 1    \;b=1\; b=1,命题是显然成立的。
证明对于    a + b = k + 1    \;a+b=k+1\; a+b=k+1时是成立的,不妨设    a > b    \;a>b\; a>b,我们只需要证明有一种    a    \;a\; a    b    \;b\; b的线性组合是    d    \;d\; d,这等价于有一种    a − b    \;a-b\; ab    b    \;b\; b的线性组合是    d    \;d\; d,而后面这个命题为满足    a + b = k − b    \;a+b=k-b\; a+b=kb的一个命题,由归纳假设易证。另外,上面如果    a = b    \;a=b\; a=b,命题也是显然成立的。

贝祖定理逆定理的证明

内容

如果对于正整数    a    \;a\; a    b    \;b\; b存在他们的一个线性组合等于    1    \;1\; 1,则他们互素。
这个内容乍一看不完整,因为上面的定理中还涉及到了最大公因数。不过上面这句话其实已经很完整了,换一种表述就是,    a    \;a\; a    b    \;b\; b线性组合的最小值是他们的最大公因数。为了不赘述,因而只把它最关键的一步描述了出来。

证明

这个的证明很简单,不再提供更多的方法:
   a    \;a\; a    b    \;b\; b的最大公因数是    d    \;d\; d,则根据上面的式子知道    d    \;d\; d整除    1    \;1\; 1,所以最大公因数是    1    \;1\; 1,亦即互素。


总结

上面不是很严格的内容的演绎,没有从最根本上入手,只是相当于大致理解一下定理内容或关系

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值