交叉熵和正则化缓解过拟合

本文介绍了交叉熵损失函数的概念,作为衡量两个概率分布间距离的指标。接着探讨正则化如何通过引入模型复杂度指标来缓解过拟合,通常通过调整w参数权重而非b参数。正则化损失函数包括L1和L2正则化,分别通过`tf.contrib.layers.l1_regularizer`和`tf.contrib.layers.l2_regularizer`计算,并将这些损失与交叉熵损失相加得到总损失函数。
摘要由CSDN通过智能技术生成

1交叉熵损失函数

概念

交叉熵损失函数; 表征两个概率分布间的距离

import tensorflow as tf

loss_ce1 = tf.losses.categorical_crossentropy([1, 0], [0.6, 0.4])
loss_ce2 = tf.losses<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值