交叉熵和正则化缓解过拟合
最新推荐文章于 2023-07-15 21:51:13 发布
本文介绍了交叉熵损失函数的概念,作为衡量两个概率分布间距离的指标。接着探讨正则化如何通过引入模型复杂度指标来缓解过拟合,通常通过调整w参数权重而非b参数。正则化损失函数包括L1和L2正则化,分别通过`tf.contrib.layers.l1_regularizer`和`tf.contrib.layers.l2_regularizer`计算,并将这些损失与交叉熵损失相加得到总损失函数。
摘要由CSDN通过智能技术生成