caffe模型训练全过程(一)脚本、数据准备与制作

本文介绍了使用Caffe进行深度学习模型训练的全过程,包括建立工程文件夹,制作LMDB数据源,修改create_imagenet.sh脚本,创建train_val.prototxt模型文件,调整solver.prototxt参数,最后运行train_caffenet.sh开始训练。重点在于数据准备和模型配置,适合初学者入门。
摘要由CSDN通过智能技术生成

1.首先建立工程文件夹

文件夹结构如下

|——project
    ├── create_imagenet.sh  #生成lmdb文件的脚本
    |——train_lmdb
        ├── data.mdb
        └── lock.mdb            #存放输出的训练集lmdb文件
    |——val_lmdb
        ├── data.mdb\
        └── lock.mdb            #存放输出的测试集lmdb文件
    ├── models              #存放输出的模型
        ├── solver_iter_2576.caffemodel
        └── solver_iter_2576.solverstate
    ├── other               #其他备份文件
    ├── solver.prototxt         #solver配置文件
    ├── train                   #测试数据集
        ├── positivite          l#存放类别1的图片
        └── negative_eg     #存放类别2的图片
    ├── train_caffenet.sh       #运行此脚本开始训练
    ├── train.txt               #存放训练集路径集合
    ├── train_val.prototxt      #caffe模型结构配置文件
    ├── val                 #测试集数据
    └── val.txt             #测试训练图片

2.制作LMDB数据源

首先生成train.txt and val.txt两个包含路径的文本文件

其如下:

train.txt

positivite/IMG_000001.jpg 1
positivite/IMG_000002.jpg 1
positivite/IMG_000003.jpg 1
positivite/IMG_000008.jpg 1
positivite/IMG_000010.jpg 1
positivite/IMG_000014.jpg 1
positivite/IMG_000016.jpg 1
positivite/IMG_000017.jpg 1
positivite/IMG_000018.jpg 1
positivite/IMG_000020.jpg 1
positivite/IMG_000022.jpg 1
positivite/IMG_000023.jpg 1
positivite/IMG_000026.jpg 1
positivite/IMG_000028.jpg 1
positivite/IMG_000029.jpg 1
positivite/IMG_000031.jpg 1
positivite/IMG_000032.jpg 1
positivite/IMG_000037.jpg 1
positivite/IMG_000039.jpg 1
positivite/IMG_000040.jpg 1
positivite/IMG_000042.jpg 1
positivite/IMG_000044.jpg 1
.....................
val.txt
positivite/IMG_000162.jpg 1
positivite/IMG_000164.jpg 1
positivite/IMG_000165.jpg 1
positivite/IMG_000167.jpg 1
positivite/IMG_000168.jpg 1
positivite/IMG_000170.jpg 1
positivite/IMG_000171.jpg 1
positivite/IMG_000174.jpg 1
positivite/IMG_000177.jpg 1
positivite/IMG_000179.jpg 1
positivite/IMG_000180.jpg 1
positivite/IMG_000184.jpg 1
positivite/IMG_000186.jpg 1
positivite/IMG_000188.jpg 1
positivite/IMG_000189.jpg 1
positivite/IMG_000194.jpg 1
positivite/IMG_000196.jpg 1
positivite/IMG_000199.jpg 1
positivite/IMG_000201.jpg 1
positivite/IMG_000202.jpg 1
positivite/IMG_000203.jpg 1
negative_eg/IMG_000180_3.jpg 0
negative_eg/IMG_000184_0.jpg 0
negative_eg/IMG_000184_1.jpg 0
negative_eg/IMG_000184_2.jpg 0
negative_eg/IMG_000184_3.jpg 0
negative_eg/IMG_000186_0.jpg 0
> negative_eg/IMG_000186_1.jpg 0
....................
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值