1. 背景介绍
1.1 人工智能与博弈论的交汇
人工智能 (AI) 在近年来取得了巨大的进步,特别是在强化学习 (RL) 领域。强化学习关注的是智能体通过与环境交互学习最佳行动策略。然而,当多个智能体存在于同一环境中,并相互影响时,传统的强化学习方法往往难以应对。这时,博弈论便成为了重要的工具。博弈论研究的是在策略性场景中,多个理性决策者之间的相互作用和均衡结果。将博弈论与强化学习相结合,诞生了多智能体强化学习 (MARL) 领域,旨在解决多智能体环境下的复杂决策问题。
1.2 多智能体强化学习的挑战
MARL 面临着诸多挑战,包括:
- 非平稳环境: 由于其他智能体的行为会不断变化,环境对于每个智能体来说都是非平稳的,这使得学习变得更加困难。
- 信用分配问题: 在多智能体环境中,很难确定每个智能体的行为对最终结果的贡献,因此难以有效地分配奖励和惩罚。
- 维度灾难: 随着智能体数量的增加,状态空间和动作空间的维度会呈指数级增长,导致计算复杂度急剧上升。