多智能体强化学习的博弈论基础

本文探讨了多智能体强化学习(MARL)在人工智能中的应用,尤其是在非平稳环境中的挑战。介绍了博弈论的基础,如纳什均衡,并阐述了MARL与博弈论的联系。文章还涵盖了基于价值和策略的MARL算法,如Q-learning和策略梯度,并通过Python实现Q-learning的代码示例,展示了实际应用场景,如机器人控制和交通管理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 背景介绍

1.1 人工智能与博弈论的交汇

人工智能 (AI) 在近年来取得了巨大的进步,特别是在强化学习 (RL) 领域。强化学习关注的是智能体通过与环境交互学习最佳行动策略。然而,当多个智能体存在于同一环境中,并相互影响时,传统的强化学习方法往往难以应对。这时,博弈论便成为了重要的工具。博弈论研究的是在策略性场景中,多个理性决策者之间的相互作用和均衡结果。将博弈论与强化学习相结合,诞生了多智能体强化学习 (MARL) 领域,旨在解决多智能体环境下的复杂决策问题。

1.2 多智能体强化学习的挑战

MARL 面临着诸多挑战,包括:

  • 非平稳环境: 由于其他智能体的行为会不断变化,环境对于每个智能体来说都是非平稳的,这使得学习变得更加困难。
  • 信用分配问题: 在多智能体环境中,很难确定每个智能体的行为对最终结果的贡献,因此难以有效地分配奖励和惩罚。
  • 维度灾难: 随着智能体数量的增加,状态空间和动作空间的维度会呈指数级增长,导致计算复杂度急剧上升。

2. 核心概念与联系

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值