David Silver UCL强化学习课程学习笔记七之Policy Gradient Methods 策略梯度

Lecture 7: Policy Gradient Methods
https://www.davidsilver.uk/wp-content/uploads/2020/03/pg.pdf

Introduction

在这里插入图片描述
在这里插入图片描述
Policy-Based RL的优点:更好的收敛性;在高维或连续动作空间中有效;可以学习随机策略
缺点:通常会收敛到局部最优,而不是全局最优;评估一项政策通常效率低下且差异很大

在这里插入图片描述
目标函数

在这里插入图片描述

一般而言,只要出现随机的策略的时候,一般都会比确定性策略效果要好。针对我们的目标函数,我们有如下几种优化方法,基于梯度的和不基于梯度的。

Finite Difference Policy Gradient

在这里插入图片描述
下面是对softmax policy和gaussian policy的推导
对于score function的推导如下
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
一步MDPS 推奖励函数的梯度,奖励函数的大导数等于score function × R在侧料π下的期望。
在这里插入图片描述
策略梯度定理,将onestep MDP的奖励R 换成了基于策略π在s,a状态下的q函数。

MC Policy Gradient

在这里插入图片描述
在无模型的情形下,需要将奖励函数的梯度期望换位采样的估计值。MC需要在每一个episode接受之后,对之一步中所有的函数进行更新,并将回报替换。

Actor-Critic Policy Gradient

在这里插入图片描述
critic用于估计action-value 函数,actor用于更新策略函数,上述是actor-critic算法的公式。这里AC算法可以降低方差但是是有偏的。

为了消除bias,我们提出了相容函数逼近。
在这里插入图片描述

advantage AC
在这里插入图片描述

TD AC
在这里插入图片描述

Natural AC
在这里插入图片描述

在这里插入图片描述
到此UCL RL公开课学习就告一段落了。有时间的话还是建议去听一听david silver老师的录课视频,每个知识点讲的很细致,学完一遍后对强化学习会有新的认识。 如果你想对深度学习打下一个好的基础,对深度学习想要做研究性工作,坚持看完david silver的视频真的很有帮助。笔者写完这些时对许多问题仍存在疑虑,有精力的话会去再学第二遍。值得一提的是david silver老师课堂节奏把控的很好,听着很舒服。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值