计算机视觉Computer Vision课程学习笔记一之intro

文章探讨了计算机视觉(CV)的任务,包括图像处理的不同方面,如几何变形、图像增强和边缘检测。它还提到了深度学习(DL)在CV中的应用,以及面临的挑战,如数据偏见、对抗性攻击、可扩展性和超参数优化。此外,文章回顾了深度学习的历史,尤其是卷积神经网络和ImageNet竞赛对领域发展的影响。
摘要由CSDN通过智能技术生成

第一章 cv任务内容包括三种:
各举出几个例子:
DL发展历程 DLdata bias Adversarial Attack Scalability Hyperparameters

Schedule

(Mathematical) Models

• geometric distortion几何变形
– pincushion/barrel distortion
• point spread function点扩散函数
• image enhancement图像增强
– histogram equalisation: constant histogram
• noise噪声
– Gaussian, salt and pepper
• thresholding阈值
– 2 modes
– Gaussian
– matching moments
– entropy
• image segmentation图像分割
– constant region intensity
• edge detection边缘检测
– step/ramp function in intensity
• frequency filtering频率滤波
– lowpass, highpass, bandpass functions
• texture analysis纹理分析
– power spectrum: power law
• classification feature space boundaries分类特征空间边界
– linear horizontal/vertical
– linear arbitrary
– quadratic
• skin detection皮肤检测
– Gaussian Mixture Model

在这里插入图片描述

Levels of analysis:

– Low level vision: manipulate pixels
– Mid level vision: extract features
– High level vision: reason about objects

A Typical computer vision tasks

• Measure or inspect known objects

– predictable view of known object
– measure dimensions, position, count

• Manufacturing
– count parts
– check castings
– position workpieces
• Inspection
– road surfaces, interior of pipes
– printed circuit boards - tracks, solder,
– packaging - bottles, labels
• Agriculture and food processing
– sort/grade fruit, vegetables, grain
– check ripeness, quality, size
– check confections (pizzas, chocolates)

• Recognise or identify unknown objects

– predictable view of unknown object
– object is one of a set known to the system

• Recognise symbols
– read text, addresses, post codes
– read product labels, serial numbers
• Recognise biological specimens
– cancerous cells in cervical smears
– chromosomes (karotyping)
• Recognise people
– faces
– fingerprints
– hands, ears, gait, retinal patterns, …
• Recognise unknown vehicles
– friend/foe aircraft

• Interpret or understand visual scene

– unpredictable view (angle, lighting, occlusions)
– object in scene not necessarily known to the system

• Tackling more difficult vision problems
– unrestricted scene contents
– uncontrolled viewing angle, lighting, occlusions
– impossible to use ‘simple’ prototypes
• Beyond the literal picture: semantics
– recognise a ‘road’, ‘chair’, ’table’
• Requires high level, abstract
– knowledge representations
– reasoning mechanisms
– control structures
• Possible applications
– automous vehicle guidance (land, sea, air)
– robots, …

B Deep Learning for Computer Vision

在这里插入图片描述

Artificial Neural Networks
History of Deep Learning for Computer Vision
AI Winter
Convolutional Neural Networks
ImageNet
The Rise of Deep Learning
Limitations of Deep Learning
在这里插入图片描述
这个图没搞懂
在这里插入图片描述

DL:data bias
Adversarial Attack
Scalability
Hyperparameters, etc.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值