Python与机器学习 章节2-单变量线性回归

  1. 模型描述
    m:训练集的数样本目,x:输入特征,y:输出变量,(x,y):一个训练样本,(x(i),y(i)):第i个训练样本,上标i不是指幂函数,而是索引,即表格中第i行。h:假设函数,接收输入的训练集,

线性回归模型

在这里插入图片描述
一元线性回归模型公式:
h θ ( x ) = θ 0 + θ 1 x h_\theta(x)=\theta_0+\theta_1x hθ(x)=θ0+θ1x
2. 代价函数(1)
θ 0 , θ 1 \theta_0,\theta_1 θ0,θ1:模型参数。如何选择不同的模型参数,使得假设函数表示的直线,尽量与数据点较好地拟合?
(在线性回归中,我们要解决的是一个最小化问题,见下式,我们需要减少预测价格和实际价格的平均误差。)
1 2 m ( ∑ i = 1 m h θ ( x ) − y ) 2 \frac{1}{2m}(\sum_ {i=1}^{m}{h_\theta(x)-y)^2} 2m1(i=1mhθ(x)y)2
注: 1 2 \frac{1}{2} 21只是用于求导计算方便将 h θ ( x ) h_\theta(x) hθ(x)的表达式代入上式得 1 2 m ( ∑ i = 1 m ( θ 0 + θ 1 x − y ) 2 \frac{1}{2m}(\sum_ {i=1}^{m}{(\theta_0+\theta_1x-y)^2} 2m1(i=1m(θ0+θ1xy)2故我们只需要关心 θ 0 , θ 1 \theta_0,\theta_1 θ0θ1的变化。我们想要做的就是关于 θ 0 和 θ 1 \theta_0和\theta_1 θ0θ1,对函数 J ( θ 0 , θ 1 ) J(\theta_0,\theta_1) J(θ0,θ1)求最小值,代价函数(Cost Function)见下式,此代价函数是解决回归问题最常用的手段。
J ( θ 0 , θ 1 ) = 1 2 m ( ∑ i = 1 m h θ ( x ) − y ) 2 J(\theta_0,\theta_1)=\frac{1}{2m}(\sum_ {i=1}^{m}{h_\theta(x)-y)^2} J(θ0,θ1)=2m1(i=1mhθ(x)y)2
3. 代价函数(2)
为了更好地使代价函数J可视化,我要使用一个简化的假设函数,见下式,即 θ 0 = 0 \theta_0=0 θ0=0
h θ ( x ) = θ 1 x h_\theta(x)=\theta_1x hθ(x)=θ1x
故新的代价函数为: J ( θ 1 ) = 1 2 m ( ∑ i = 1 m ( θ 1 x i − y i ) 2 J(\theta_1)=\frac{1}{2m}(\sum_ {i=1}^{m}{(\theta_1x^i-y^i)^2} J(θ1)=2m1(i=1m(θ1xiyi)2
我们的优化目标是尽量减小 J ( θ 1 ) J(\theta_1) J(θ1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

高达十几个

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值