A:http://poj.org/problem?id=1270
POJ 1270Following Orders
Analysis
分析
这是一道比较典型的全排列生成问题,只是生成的每一个排列都要满足给定的条件,且必须按顺序生成。我们当然可以简单的利用STL里的next_permutation函数来解决这个问题,事实上这是非常容易的。关于next_permutation和prev_permutation这两个神奇函数的内部算法,请参见我的另一篇文章:全排列生成算法。
回到本问题的解答,既然已经可以按照题目要求的字母表顺序生成全排列,那么现在的问题就是如何使生成的排列符合给定的约束。最简单的办法就是检查已生成序列中是否存在违背约束的字母对,当然是要用双重循环遍例字符串中的所有字母对。由于最多只有26个字母,因此为加快速度,可以建立一个26×26的二维数组来表示两个字母间是否给定了大于的约束关系。检查生成的排列时,如果发现了某一对字母逆向的符合了这个关系表中对应的结点,则认为是非法的排列。
暴力竟然可过!
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <string.h>
using namespace std;
int main()
{
int m[27][27];
char a[50],aa[50],b[1000],bb[1000];
char ch;
int flag=0;
memset(b,0,sizeof(b));
memset(a,0,sizeof(a));
memset(aa,0,sizeof(aa));
memset(bb,0,sizeof(bb));
while(gets(a))
{
if(flag==1)
printf("\n");
flag=1;
int j=0;
int z=strlen(a);
for(int i=0; i<z; i++)
{
if(a[i]!=' ')
{
aa[j++]=a[i];
}
}
gets(b);
j=0;
int x=strlen(b);
for(int i=0; i<x; i++)
{
if(b[i]!=' ')
bb[j++]=b[i];
}
memset(m,1,sizeof(m));
int mm=strlen(bb);
for(int i=0; i<mm; i+=2)
m[bb[i+1]-'a'][bb[i]-'a']=0;
int n=strlen(aa);
sort(aa,aa+n);
int ff=1;
do
{
for(int i=0;i<n-1;i++)
{
for(int j=i+1;j<n;j++)
{
if(m[aa[i]-'a'][aa[j]-'a']==0)
{
ff=0;
break;
}
}
if(ff==0)break;
}
if(ff==0);
else
{
for(int i=0;i<n;i++)
printf("%c",aa[i]);
printf("\n");
}
ff=1;
}
while (next_permutation(aa,aa+n));
memset(b,0,sizeof(b));
memset(a,0,sizeof(a));
memset(aa,0,sizeof(aa));
memset(bb,0,sizeof(bb));
}
}
另附一份大神代码!
#include <algorithm>
#include <iostream>
#include <string>
using namespace std;
//主函数
int main(void) {
bool bFirst = true;
char szOrder[24];
//循环读取并处理每一个组原字符串和约束
for (string str; getline(cin, str); bFirst = false) {
//为加快速度,便于处理,将原字符串转存到数组中
strcpy(szOrder, str.c_str());
//去掉原字符串中间的空格
int nLen = remove(szOrder, &szOrder[str.size()], ' ') - szOrder;
szOrder[nLen] = '\0';
//获取约束串
getline(cin, str);
//去掉约束串中间的空格
str.erase(remove(str.begin(), str.end(), ' '), str.end());
//生成约束关系表,如果存在约束i > j,则aCompMat[i][j]为true
bool aCompMat[26][26] = {0};
for (string::iterator i = str.begin(); i != str.end(); i += 2) {
aCompMat[*i - 'a'][*(i + 1) - 'a'] = true;
}
//将原字符串从大到小排序,准备生成全排列
sort(&szOrder[0], &szOrder[nLen]);
//如果不是第一次,要按要求在第一行输出一个回车
if (!bFirst) {
cout << endl;
}
//bFlag为false表示发现该顺序不满足约束。每次生成下一组全排列
for (bool bFlag = true; bFlag; bFlag = next_permutation(
&szOrder[0], &szOrder[nLen])) {
//循环判断当前生成的顺序中是否每一对字符都满足约束
for (int i = 0; i < nLen - 1 && bFlag; ++i) {
for (int j = i + 1; j < nLen && bFlag; ++j) {
//出现逆序,即aCompMat[j][i] = true,即不满足
bFlag &= !aCompMat[szOrder[j] - 'a'][szOrder[i] - 'a'];
}
}
//如果全满足约束,则输出有序集
if (bFlag) {
cout << szOrder << endl;
}
}
}
return 0;
}
B:http://poj.org/problem?id=2528 Mayor's posters, 也是HOJ上的题
线段树:
#include<iostream>
#include<algorithm>
#include<cstdio>
>
using namespace
#include<string.
hstd;
const int MAXN = 20005 ;
tree[MAXN*4
struct NODE
{
int l,r,c;
}
];
struct L
{
int li,num;
r ) const
{
return li<r.li;
bool operator < ( const L&
};
};
ine[MAXN];
in
L
lt post[MAXN][2];
bool vis[MAXN];
int cnt;
ee[v].c=0,tree[v].l=l,tree[v].r=r;
void make_tree ( int v, int l, int r )
{
int mid=(l+r)>>1;
t
r if ( l!=r )
{
make_tree( v<<1, l, mid );
make_tree( (v<<1)+1, mid+1, r );
}
}
tree[v].c=c;
return;
}
void update ( int v, int l, int r, int c )
{
int mid;
if ( tree[v].l==l && tree[v].r==r )
{
if ( tree[v].c>0 && tree[v].c!=c )
r<=m
{
tree[v<<1].c=tree[v].c;
tree[(v<<1)+1].c=tree[v].c;
tree[v].c=0;
}
mid=(tree[v].l+tree[v].r)>>1;
if
(id ) update( v<<1, l, r, c );
else if ( l>mid ) update( (v<<1)+1, l, r, c );
else
{
update( v<<1, l, mid, c );
{
vis[tree[v].c]=true;
update( (v<<1)+1, mid+1, r, c );
}
}
void sum ( int v )
{
if ( tree[v].c )
{
if ( !vis[tree[v].c] )
cnt++;
}
return;
}
sum( v<<1 );
sum( (v<<1)+1 );
}
int main ( )
{
int n,N,i;
scanf("%d",&N);
while ( N-- )
{
ost[i][0],&pos
cnt=0;
scanf("%d",&n);
memset( vis, false, sizeof(vis) );
//记录端点
for ( i=0 ; i<n ; i++ )
{
scanf("%d%d",&
pt[i][1]);
line[i<<1].li=post[i][0];
line[i<<1].num=-(i+1); //表示起点
line[(i<<1)+1].li=post[i][1];
for( i=0; i<2*n; i++ )
{
line[(i<<1)+1].num=i+1; //表示终点
}
//离散化坐标
sort( line, line+n*2 );
int tp=1,temp=line[0].li
; if( line[i].li!=temp )
{
tp++;
temp=line[i].li;
}
if( line[i].num<0 ) post[-line[i].num-1][0]=tp; //表示起点
post[i][0], post[i][1], i+1 );
sum(1);
else post[line[i].num-1][1]=tp; //表示终点
}
//计算离散化之后不同点的个数,存在tp中
make_tree( 1, 1, tp );
for ( i=0 ; i<n ; i++ )
update( 1
, printf("%d\n",cnt);
}
}
D:http://poj.org/problem?id=2505
乘法博弈
http://blog.csdn.net/e6894853/article/details/8220903