使用 Vertex AI Agent Builder 和 Dialogflow 生成应用程序

什么是Vertex AI Agent Builder?

Vertex AI Agent Builder 让开发人员(即使是机器学习技能有限的开发人员)能够利用 Google 的基础模型、搜索专业知识和对话式 AI 技术的强大功能来创建企业级生成式 AI 应用程序。

Vertex AI Agent Builder 包含以下功能:

  • Vertex AI Agents
  • Vertex AI Search

Vertex AI Agents

Vertex AI Agents 是一个基于大型语言模型 (LLM) 构建的新型自然语言理解平台。借助它,您可以轻松设计对话式用户界面并将其集成到您的移动应用、Web 应用、设备、机器人、交互式语音响应系统等中。使用 Vertex AI Agents,您可以为用户提供与您的产品互动的全新且引人入胜的方式。

Chat 应用

类似聊天机器人的应用程序,您可以在其中定义不同的聊天路径。更像 LLM 之前的聊天机器人 - 但增强了 LLM 的功能。与“仅仅”搜索相比,聊天允许更复杂的交互和用户指导。

代理应用 (Agent apps)

代理应用提供了创建虚拟客服的新方式 大型语言模型 (LLM)。 无需定义 Dialogflow CX 流程、页面、意图和转换; 您可以提供自然语言指令和结构化数据。 这可以大幅降低虚拟客服的 创建和维护时间, 为企业实现全新类型的对话体验。

Vertex AI Search

Vertex AI Search 是一个完全托管的平台,由大型语言模型提供支持,可让您为公共或私人网站或移动应用程序构建支持 AI 的搜索和推荐体验。

搜索应用

借助 Vertex AI Search,您可以根据自己的数据快速构建 Google 质量的搜索应用,并在网页或应用中嵌入搜索栏。

您可以创建以下不同类型的搜索应用程序:

  • 通用搜索。将通用搜索应用于包含您专有数据的网站或数据存储,让您的客户在您希望他们看到的内容上获得 Google 品质的搜索体验。
  • 媒体搜索。这是专门针对电影、视频和音乐等媒体内容设计的搜索功能。通过媒体搜索,观众可以高效地找到他们想要观看或收听的媒体内容。
  • 医疗保健搜索。这是一项搜索功能,可让您查询存储在 FHIR 数据存储中的医疗保健记录。您可以从 Cloud Healthcare API FHIR 存储中导入包含临床数据的 FHIR 资源。您还可以搜索 FHIR 资源引用的非结构化数据,例如图像、PDF 文件和 RTF 文件。
推荐应用

您可以根据自己的数据快速构建一个最先进的推荐应用程序,该应用程序可以推荐与用户正在查看的内容类似的内容。

您可以创建以下两种不同类型的推荐应用程序:

  • 媒体推荐。获取视频、新闻和音乐等媒体内容的推荐。借助媒体推荐,观众可以发现更多个性化内容,例如接下来要观看或阅读的内容,并使用优化目标定制 Google 品质的结果。
  • 通用推荐(预览)。获取非媒体内容的推荐。
数据存储和应用程序

使用 Vertex AI Search,您可以创建搜索或推荐应用并将其附加到数据存储。您可以将数据导入数据存储并编制索引。应用和数据存储具有一对一关系。

根据您使用的数据类型,您可以创建各种类型的数据存储。每个数据存储可以包含一种类型的数据:

  • 网站数据:您可以提供诸如 www.ecloudrover.com,并在这些域名上启用内容的搜索。
  • 结构化数据:具有结构化数据的数据存储,可对结构化数据(例如 BigQuery 表、 JSONL 文件)。
  • 非结构化数据:非结构化数据存储支持对文档和图像等数据进行混合搜索。搜索 HTML、内嵌文本的 PDF 和 TXT 格式的文档。PPTX 和 DOCX 格式在预览版中可用。
  • 结构化媒体数据:具有特定于媒体行业的结构化数据架构的数据存储。例如,结构化媒体数据(例如视频、新闻或音乐)
  • 第三方数据源:从第三方数据源提取数据,例如Confluence、Jira、Slack等。
  • 医疗保健 FHIR 数据
<think>好的,用户想了解AI Agent的开发平台及其典型应用场景。首先,我需要回顾一下之前提供的引用内容,看看有没有相关的信息。引用2提到了瓴羊的Data Agent平台,这是一个数据与AI结合的平台,允许企业根据需求创建定制化的数据代理。引用3则讨论了AI Agent的应用趋势,比如具身智能体、多模态智能体群体智能体。这些信息可以作为回答的基础。 接下来,我需要确定用户的问题重点。他们可能想知道有哪些主流的开发平台,以及这些平台在不同行业中的应用。可能需要分点说明开发平台,每个平台的特点,然后列举应用场景,并结合引用中的例子。 然后,要确保结构清晰。可能分为两部分:开发平台典型应用场景。每个部分下再细分小点,比如开发平台可以包括微软AutoGen、Data Agent、谷歌Vertex AI等,应用场景则涵盖旅游、医疗、金融等。 需要注意引用中的案例,比如引用1提到的旅游酒店业的应用,引用3的具身智能体在制造业物流中的应用。要自然地融入这些例子,并在末尾加上引用标识。 还要考虑用户可能的深层需求,比如开发平台的选择标准,或者应用场景的实际效果。不过用户主要问的是平台场景,所以先集中回答这两部分。 最后,生成相关问题,引导用户进一步探索,比如开发平台的技术架构或成功案例。确保问题与回答内容相关,帮助用户深入理解。</think>### AI Agent开发平台及典型应用场景 #### 一、AI Agent开发平台 1. **微软AutoGen** 支持多智能体协作开发框架,提供可视化编程界面,可快速构建对话式AI、数据分析等场景的智能体[^2]。典型特点包括模块化架构跨平台部署能力。 2. **瓴羊Data Agent** 专注企业级数据智能应用,提供低代码开发环境。企业可根据角色需求(如销售、运营)快速创建定制化数据代理,实现知识沉淀与复用[^2]。 3. **谷歌Vertex AI Agent Builder** 集成大语言模型与行业知识库,支持自然语言交互式开发。适用于客服、医疗咨询等需要专业领域知识的场景。 4. **开源框架(Hugging Face Agents)** 提供预训练模型库API接口,开发者可灵活调用NLP、计算机视觉等能力构建多模态智能体[^3]。 $$ \text{开发平台能力公式}:\quad \text{Platform}=f(\text{模块化}, \text{数据集成}, \text{部署效率}) $$ #### 二、典型应用场景 1. **智能服务领域** - 旅游行业:$智能行程规划+实时多语言导览$,如根据用户偏好动态调整景点路线[^1] - 医疗领域:$电子病历分析+用药提醒$,辅助医生进行诊断决策 2. **产业数字化** - 制造业:具身智能体通过$视觉识别+机械控制$实现质检自动化[^3] - 金融行业:$风险预测模型+合规审查$,完成信贷审批全流程 3. **城市治理** - 群体智能体系统协调交通信号灯,优化$车流量\times通行效率$参数 - 环境监测场景中,多模态Agent融合$传感器数据+卫星图像$预测污染扩散 ```python # 以客服Agent为例的简化架构 class CustomerServiceAgent: def __init__(self, knowledge_base): self.nlp_engine = HuggingFacePipeline() self.knowledge = load_knowledge(knowledge_base) def respond(self, query): intent = self.nlp_engine.detect_intent(query) return self.knowledge.retrieve(intent) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值