智能电网中多时段多公司需求响应管理的博弈理论框架
利用博弈论建立了一个考虑公司和消费者之间相互作用的多时期多公司需求响应框架。
在Stackelberg博弈中建立了相互作用的模型,公司设定价格,而消费者选择他们的需求作为回应。
证明了潜在博弈具有一个独特的均衡,公司的收益最大化而消费者的效用最大化受当地约束。
给出了所有参与方的最优策略的封闭表达式。
构造了一个具有唯一纯策略纳什均衡的权力分配博弈,并给出了该博弈的封闭形式表达式。
进一步提供了一种快速分布的算法来计算所有的最优策略只使用局部信息。
也研究在周期的数量(时间范围的细分和消费者的数量变化的影响。
当参与需求响应的消费者数量超过某一阈值时,能够找到一个合适的公司与消费者比例。
为消费者所需的最低预算提供了一个条件,并使用现实数据进行案例研究,其中显示了高达30%的潜在节约和具有低波动性的均衡价格
YID:66200637297336956
SourseCode
智能电网中多时段多公司需求响应管理的博弈理论框架
在智能电网领域中,多时段多公司需求响应管理是一个重要的问题。为了解决这个问题,我们可以利用博弈论建立一个考虑公司和消费者之间相互作用的多时期多公司需求响应框架。
在这个框架中,我们采用了Stackelberg博弈模型。在该模型中,公司设定价格,而消费者则选择他们的需求作为回应。通过分析博弈模型,我们证明了潜在博弈存在着一个独特的均衡,其中公司的收益最大化,而消费者的效用最大化受到当地约束的影响。
进一步地,我们给出了所有参与方的最优策略的封闭表达式。这些最优策略能够帮助各方在多时段多公司需求响应管理中做出更加合理的决策。同时,我们还构造了一个具有唯一纯策略纳什均衡的权力分配博弈,并给出了该博弈的封闭形式表达式。
为了实现快速计算所有的最优策略,我们提供了一种快速分布的算法。这个算法只使用局部信息,可以在智能电网中高效地进行多时段多公司需求响应管理。
此外,我们还研究了周期的数量对多时段多公司需求响应管理的影响。通过对时间范围的细分和消费者数量变化的分析,我们能够找到一个合适的公司与消费者比例,当参与需求响应的消费者数量超过某一阈值时。
最后,我们给出了消费者所需的最低预算的条件,并使用现实数据进行了案例研究。研究结果显示,在多时段多公司需求响应管理中,通过合理的电价设定和需求响应策略,可以实现高达30%的潜在节约,并且具有低波动性的均衡价格。
综上所述,我们建立了一个基于博弈理论的框架,用于智能电网中多时段多公司需求响应管理。该框架通过分析博弈模型,给出了最优策略的封闭表达式,并提供了一种快速分布的算法来计算所有的最优策略。通过实际案例研究,我们验证了该框架的有效性,并展示了潜在节约和具有低波动性的均衡价格的优势。这个研究对于智能电网领域的发展具有重要的意义,可以为实现可持续电力系统提供理论基础和技术支持。
相关的代码,程序地址如下:http://imgcs.cn/637297336956.html