Algebra:Chapter 0 - 等价关系,划分,商

等价关系,划分,商

在集合 S S S上的关系与集合 S S S中元素的选择相关。例如,在集合 Z \mathbb{Z} Z上的关系 < < <就是一种用来比较两个整数大小的方法:由于 2 < 5 2<5 2<5,所以 2 2 2 5 5 5在某种意义上是相关的,而 5 5 5 2 2 2在这个意义下是不相关的。

在实际使用时,关系的意义完全取决于集合中一个元素如何与另一个元素相关。关系直观的定义就是:一个集合 S S S上的关系就是笛卡尔积 S × S S\times S S×S的一个子集 R R R。如果 ( a , b ) ∈ R (a,b) \in R (a,b)R,我们就说 a a a b b b存在关系 R R R,并且写成 a R b aRb aRb通常我们会用更fancy的符号来表示关系,比如 < , ≤ , = , ∼ , … <,\leq,=,\sim,\dots <,,=,,

相等的关系可以定义成下面这样: { ( a , b ) ∈ S × S ∣ a = b } = { ( a , a ) ∣ a ∈ S } ⊆ S × S \{(a,b) \in S\times S\mid a=b\}=\{(a,a)\mid a \in S\}\subseteq S\times S {(a,b)S×Sa=b}={(a,a)aS}S×S

牛逼啊, ( a , b ) ∈ S × S (a,b)\in S\times S (a,b)S×S是笛卡尔积,这个关系的定义就是 a = b a=b a=b,有了这两个就有了子集 R R R,这个就是关系。

拥有如下三个性质的这种特殊关系非常重要:如果 ∼ \sim 表示这种关系,那么 ∼ \sim 满足

  • 反身性: ( ∀ a ∈ S )   a ∼ a (\forall a \in S)\ a\sim a (aS) aa
  • 对称性: ( ∀ a ∈ S )   ( ∀ b ∈ S )   a ∼ b ⟹ b ∼ a (\forall a \in S)\ (\forall b \in S)\ a\sim b \Longrightarrow b \sim a (aS) (bS) abba
  • 传递性: ( ∀ a ∈ S )   ( ∀ b ∈ S )   ( ∀ c ∈ S ) , ( a ∼ b   a n d   b ∼ c ) ⟹ a ∼ c (\forall a \in S)\ (\forall b \in S)\ (\forall c \in S),(a\sim b\ \mathrm{and}\ b\sim c) \Longrightarrow a\sim c (aS) (bS) (cS),(ab and bc)ac

每个 a a a都和自身等价;如果 a a a等价于 b b b,那么 b b b也等价于 a a a

定义 1.1. 在集合 S S S上满足上面三个性质的任意关系 ∼ \sim 就是等价关系。

集合上的关系非常宽泛,没有关系也是一种关系,在众多的关系中,拥有上面三种性质的关系非常重要,单独把它拎出来叫做等价关系

等价关系中 S × S S\times S S×S相应的子集 R R R,反身性说的是diagonal存在于 R R R中,对称性说的是如果沿着对角线反转, R R R保持不变,也就是如果每个 ( a , b ) (a,b) (a,b)交换成 ( b , a ) (b,a) (b,a);传递性并没有很合适的pictorial translation。

S S S上等价关系的数据相当于一种类型信息,在一开始可能有点不一样,就是 S S S的划分( p a r t i t i o n partition partition)。 S S S的划分是一簇 S S S不相交的的非空子集,它们的并集是 S S S:例如, P = { { 1 , 4 , 7 } , { 2 , 5 , 8 } , { 3 , 6 } , { 9 } } \mathscr{P}=\{\{1,4,7\},\{2,5,8\},\{3,6\},\{9\}\} P={{1,4,7},{2,5,8},{3,6},{9}}就是集合 { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 } \{1,2,3,4,5,6,7,8,9\} {1,2,3,4,5,6,7,8,9}的一个划分。

如何通过在 S S S上的关系 ∼ \sim 得到一个 S S S的划分:对于每个元素 a ∈ S a \in S aS a a a的等价类( e q u i v a l e n c e   c l a s s equivalence\ class equivalence class)是 S S S的一个子集,被定义为 [ a ] ∼ ≔ { b ∈ S ∣ b ∼ a } [a]_{\sim}\coloneqq\{b \in S\mid b\sim a\} [a]:={bSba}然后等价类就构成了 S S S上的一个划分 P \mathscr{P} P

反过来,每个划分 P \mathscr{P} P都对应一个等价类。因此 S S S上的等价类和 S S S上的划分含义相同。

现在我们可以把 P ∼ \mathscr{P}_{\sim} P看作一个集合,它的元素是相对于关系 ∼ \sim 的等价类。这就是在1.3节提到的商操作。

这里 ∼ \sim 是等价关系, P ∼ \mathscr{P}_{\sim} P是所有等价类的集合,后面有个证明题。

定义 1.2. 集合 S S S相对于等价关系 ∼ \sim 的商( q u o t i e n t quotient quotient)就是集合:
S / ∼ ≔ P ∼ \left. S \middle/ \sim \right. \coloneqq\mathscr{P}_{\sim} S/:=P

例子 1.3. 令 S = Z S=\mathbb{Z} S=Z,并且令 ∼ \sim 是定义为如下式子的关系 a ∼ b ⟺ a − b   为 偶 数 a\sim b \Longleftrightarrow a - b\ 为偶数 abab 那么 Z / ∼ \left. \mathbb{Z} \middle/ \sim \right. Z/包含了两个等价类: Z / ∼ = { [ 0 ] ∼ , [ 1 ] ∼ } \left. \mathbb{Z} \middle/\sim \right. =\{[0]_{\sim},[1]_{\sim}\} Z/={[0],[1]}
实际上,每个整数 b b b要么是偶数(因为 b − 0 b-0 b0是偶数,所以 b ∼ 0 b\sim 0 b0 b ∈ [ 0 ] ∼ b\in [0]_{\sim} b[0])或者奇数(因此 b − 1 b-1 b1是偶数,所以 b ∼ 1 b\sim 1 b1 b ∈ [ 1 ] ∼ b \in [1]_{\sim} b[1])。这就是模运算的起点。

另一种思考这种操作是在商的操作下等价关系变得相等了:就是说在商 S / ∼ \left. S \middle/\sim\right. S/中的两个元素是相等的当且仅当 S S S中对应的元素有关系 ∼ \sim 。换句话说,商是一种将等价关系变得相等。在后面的“categorical terms”将会进一步的正规化(5.3节)。

解读

  • 等价关系是笛卡尔积的一个子集
  • 等价关系的三个性质很重要

单词

  • Intuitively:
  • affinity
  • -reflexivity
  • symmetry
  • transitivity
  • diagonal
  • datum: 数据;资料
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值