【Python数据挖掘课程】九.回归模型LinearRegression简单分析氧化物数据

本文是Python数据挖掘课程的一部分,介绍了线性回归模型的基础知识,包括算法简介、数据集介绍和回归模型分析。通过实例探讨了线性回归的求解方法,如梯度下降和最小二乘法,并提供了数据集链接和简单的代码示例。
摘要由CSDN通过智能技术生成

        这篇文章主要介绍三个知识点,也是我《数据挖掘与分析》课程讲课的内容。同时主要参考学生的课程提交作业内容进行讲述,包括:
        1.回归模型及基础知识;
        2.UCI数据集;
        3.回归模型简单数据分析。

        该系列github完整代码地址,欢迎点Star,谢谢!支持Python3.x~
        -  https://github.com/eastmountyxz/Python-for-Data-Mining
 

        前文推荐:
       【Python数据挖掘课程】一.安装Python及爬虫入门介绍
       【Python数据挖掘课程】二.Kmeans聚类数据分析及Anaconda介绍
       

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Eastmount

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值