你能想象吗,传输线能控到多少阻抗还要看隔壁信号线的脸色?

本文讨论了高速电路中传输线阻抗的计算,特别强调了共面方法的使用和邻线信号对阻抗的影响。作者通过实例说明,即使在设计时试图独立控制信号A的阻抗,信号B的存在会导致阻抗显著变化,因此在多信号环境下要考虑邻线效应。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

高速先生成员--黄刚

关于传输线的阻抗计算相关的文章,高速先生都写过很多篇了,定性来说的话就是传输线的阻抗和自己的线宽铜厚以及材料的介电常数都成反比,与到参考平面的距离成正比。定量来说的话,就以今天我们要讲的案例来说吧,是1个2层板1.6mm的产品,正常来说,做过2层板的朋友们都应该知道,如果一根表层的走线想要通过底层的参考平面来控阻抗的话,那简直是。。。

2.png

是的,是基本上不可能的,除非你做成线宽超过100mil,也就是跟个小平面一样才勉强可以。

3.png

聪明的朋友们又想到了另外一种方法,那就是表层通过共面的方法来控阻抗。不得不说,这个发明是真的好用,线宽直接缩小了4倍就能控到阻抗了。


 

4.png

那高速先生给大家提一个问题哈,那如果下面这样的结构呢,你们觉得信号A或者信号B还能不能控制到阻抗,其中一根的阻抗又应该怎么去算呢?


 

5.png

高速先生觉得至少有一半的粉丝会这样来算是吧?假设要算信号A的阻抗,然后认为信号B不是地,只是一根信号,与它无瓜,就直接忽略,这样来算阻抗。


 

6.png

信号B就这样被你们忽略掉了?好歹它是实打实在PCB板上的走线,是信号A旁边的那根线哦!乍一看,貌似这样的算法很合理,实际上。。。

7.png

那到底要怎么样算嘛!高速先生为此还真的专门做了一块测试板出来,就是按照上面类似的线宽来做的。

8.png

那到底信号线A的阻抗是多少呢?信号线B到底在它旁边起到一个怎么样的影响呢?我们想象一下在具体工作的时候信号A和信号B都同时在发送不同的数据码型,由于是随机码,它们具体在某个时刻是什么样的码型我们肯定不会知道,但是我们知道,在固定的某一时刻,它们之间只会有下面case1,case2和case3这三种状态。

9.png

那么我们分别测试下这两根线在这三种case状态下的信号A的阻抗,不测不知道,一测我相信你们会吓一跳,三种状态下信号线A的阻抗分别是85欧姆,36欧姆和56欧姆。三种不同的状态阻抗不是差一两欧姆的事情,是差一二十欧姆哦! 

10.png

所以说,遇到这种旁边也是信号线的场景,你自己的阻抗就由不得你说了算了,你自己是多少欧姆的阻抗就很看旁边走线的“心情”了,旁边信号跑的码型和状态对你本身的阻抗影响也是非常非常巨大的哈。

内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
数据集一个高质量的医学图像数据集,专门用于脑肿瘤的检测和分类研究以下是关于这个数据集的详细介绍:该数据集包含5249张脑部MRI图像,分为训练集和验证集。每张图像都标注了边界框(Bounding Boxes),并按照脑肿瘤的类型分为四个类别:胶质瘤(Glioma)、脑膜瘤(Meningioma)、无肿瘤(No Tumor)和垂体瘤(Pituitary)。这些图像涵盖了不同的MRI扫描角度,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构,为模型训练提供了丰富多样的数据基础。高质量标注:边界框是通过LabelImg工具手动标注的,标注过程严谨,确保了标注的准确性和可靠性。多角度覆盖:图像从不同的MRI扫描角度拍摄,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构。数据清洗与筛选:数据集在创建过程中经过了彻底的清洗,去除了噪声、错误标注和质量不佳的图像,保证了数据的高质量。该数据集非常适合用于训练和验证深度学习模型,以实现脑肿瘤的检测和分类。它为开发医学图像处理中的计算机视觉应用提供了坚实的基础,能够帮助研究人员和开发人员构建更准确、更可靠的脑肿瘤诊断系统。这个数据集为脑肿瘤检测和分类的研究提供了宝贵的资源,能够帮助研究人员开发出更准确、更高效的诊断工具,从而为脑肿瘤患者的早期诊断和治疗规划提供支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值