支持AMD GPU的llm.c

anthonix/llm.c: LLM training in simple, raw C/HIP for AMD GPUs (github.com)

llm.c for AMD devices

This is a fork of Andrej Karpathy's llm.c with support for AMD devices.

性能

在单个7900 XTX显卡上使用默认设置,目前的训练步骤耗时约为79毫秒,相比PyTorch的夜间版本(2.4.0.dev20240513)的约97毫秒,以及tinygrad的约440毫秒来说,表现更优。

对于多GPU训练,在装有四个7900 XTX显卡的机器上,吞吐量达到了每秒约210,000个令牌。

更新(2

### 如何在 Windows 上使用 LLM.C 编程或运行 LLM.C 相关的程序 为了能够在 Windows 操作系统中成功编译并运行 `llm.c` 或类似的单文件纯 C 实现的大规模语言模型 (LLM),需要遵循一系列配置和安装步骤。 #### 安装必要的工具链和支持库 首先,确保已安装适用于 Windows 的 GCC 编译器。可以通过 MinGW-w64 来获取 GCC 工具链,在此之后还需要下载并设置 TDM-GCC 或 MSYS2 环境以便更好地支持 Windows 平台上的 GNU 软件包[^3]。 其次,由于 `llm.c` 可能依赖于某些外部库来进行矩阵运算或其他高级计算任务,因此可能也需要安装 BLAS/LAPACK 数学函数库以及 Python 解释器用于辅助脚本编写与测试工作。 #### 获取源码并构建项目 访问指定的 GitCode 页面克隆仓库至本地机器: ```bash git clone https://gitcode.com/gh_mirrors/ll/llama2.c.git cd llama2.c ``` 接着利用之前准备好的 GCC 对源文件进行编译链接操作,生成可执行文件: ```bash gcc -O3 -o llm.exe llm.c -lm -pthread -lws2_32 ``` 这里 `-lm` 表示连接数学库;而 `-pthread`, `-lws2_32` 则是为了兼容多线程及网络通信所需加载的相关动态链接库。 #### 测试验证 完成上述准备工作后即可尝试启动刚刚创建的应用程序,并传入适当参数以观察其行为表现是否正常。例如可以先从简单的命令行输入开始体验基本功能特性: ```cmd .\llm.exe --help ``` 这会显示帮助信息列表,指导用户进一步了解可用选项及其用途。 #### 使用注意事项 考虑到不同版本间可能存在差异性调整,建议始终参照官方文档说明来确认最新变更情况。另外值得注意的是,尽管可以在 Windows 下顺利移植此类开源项目,但在实际部署过程中仍需关注目标环境的具体要求,比如硬件加速能力、内存占用率等因素的影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

109702008

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值