使用LoRA进行高效微调:基本原理

### LoRA微调SD模型原理 在处理大规模预训练模型时,低秩适应(Low-Rank Adaptation, LoRA)提供了一种高效的方法来调整这些模型以适应特定的任务需求。对于稳定扩散(Stable Diffusion, SD)模型而言,LoRA通过引入低维参数矩阵的方式,在保持原有模型性能的同时显著减少了所需的额外存储空间和计算资源。 具体来说,当应用LoRA于SD模型上时,主要操作是在原有的权重矩阵W基础上增加两个较小规模的新矩阵A和B,形成新的权重表达形式\( W' = W + AB \)[^1]。这里,矩阵A通常具有较低的列数而矩阵B则有较少的行数,二者相乘的结果AB可以看作是对原始权重的一个增量更新项。这种设计使得只有新增加的小型矩阵需要被优化学习,从而大大降低了训练成本并提高了效率。 为了实现这一过程,首先会冻结住原生大模型中的大部分参数不变;接着针对目标任务定义好相应的损失函数,并利用反向传播算法仅对新加入的两组参数(A,B)进行梯度下降迭代求解最优值。最终得到经过LoRA微调后的SD版本能够在目标领域内表现出更好的泛化能力和更高的精度表现。 ```python import torch.nn as nn class LoraLayer(nn.Module): def __init__(self, original_layer, rank=4): super().__init__() self.original_layer = original_layer # Initialize low-rank matrices A and B input_dim, output_dim = original_layer.weight.shape self.A = nn.Parameter(torch.randn(rank, input_dim)) self.B = nn.Parameter(torch.randn(output_dim, rank)) def forward(self, x): lora_output = self.original_layer(x) + self.B @ self.A @ x return lora_output ```
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

109702008

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值