使用Python分析歌曲调性:方法与实战

音乐调性分析是音乐制作、学习和研究中的重要环节。传统方法依赖专业乐理知识,而现代技术可通过Python快速实现自动化检测。本文将介绍基于librosa和Essentia库的四种调性分析方法,并通过实际音频测试验证其效果。


一、方法与工具

1. 核心原理

  • Chromagram特征:将音频频谱映射到12平均律音高,反映各音级的能量分布

  • 主音检测:寻找能量最高的音级(对应简谱中的1=X)

  • 调式判定:通过音阶模板匹配区分大调/小调

2. 工具对比

优点 缺点
librosa 安装简单,API友好 调式检测需手动实现
Essentia 专业算法,直接输出调式 依赖复杂,需模型支持

二、代码实现与测试

方法1:基础主音检测(librosa)

import librosa
import numpy as np

def 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

109702008

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值