spark:ML和MLlib的区别


ML和MLlib的区别如下:

  • ML是升级版的MLlib,最新的Spark版本优先支持ML。
  • ML支持DataFrame数据结构和Pipelines,而MLlib仅支持RDD数据结构。
  • ML明确区分了分类模型和回归模型,而MLlib并未在顶层做此类区分。
  • ML通过DataFrame元数据来区分连续和分类变量。
  • ML中的随机森林支持更多的功能:包括重要度、预测概率输出等,而MLlib不支持。


official documentation:
  • The main differences between this API and the original MLlib ensembles API are:
  • support for DataFrames and ML Pipelines
  • separation of classification vs. regression
  • use of DataFrame metadata to distinguish continuous and categorical features
  • more functionality for random forests: estimates of feature importance, as well as the predicted probability of each class (a.k.a. class conditional probabilities) for classification.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值