术语
- 图——由结点的有穷集合V和边的集合E组成,在图中,结点常被称为顶点,若两个顶点之间存在一条边,则表示两个顶点相邻。
- 有向图——图的每条边都有方向。
- 无向图——图的每条边没有方向。
- 弧——有向图中,常将边称为弧,含箭头的一端称为弧头,另一端称为弧尾,记作 < v i , v j v_i,v_j vi,vj>,表示从顶点 v i v_i vi 到顶点 v j v_j vj 有一条边。
- 顶点的度——无向图中,边记作 ( v i , v j v_i,v_j vi,vj),它等价于在有向图中存在 < v i , v j v_i,v_j vi,vj> 和 < v j , v i v_j,v_i vj,vi> 两条边。与顶点 v 相关的边的条数称为顶点 v 的度。
- 顶点的入度、出度——有向图中,指向顶点 v 的边的条数称为顶点 v 的入度,由顶点 v 出发的边的条数称为顶点 v 的出度。
- 有向完全图和无向完全图——若有向图中有 n 个顶点,则最多有 n(n-1) 条边,将具有 n(n-1)条边的有向图称为有向完全图,若无向图中有 n 个顶点,则最多有 n(n-1)/2 条边,将具有 n(n-1)/2 条边的无向图称为完全无向图。
- 路径和路径长度——在一个图中,路径为相邻顶点序偶所构成的序列。路径长度指路径上边的数目。
- 简单路径——序列中顶点不重复出现的路径。
- 回路——若一条路径中第一个顶点和最后一个顶点相同,则这条路径是一条回路。
- 连通、连通图和连通分量——在无向图中,如果从顶点 v i v_i vi 到顶点 v j v_j vj 有路径,则称 v i v_i vi 和 v j v_j