完全理解图(上)——图的概念、存储及遍历

本文介绍了图的基本概念,包括有向图、无向图、顶点的度、连通图等,并详细讲解了图的四种存储结构:邻接矩阵、邻接表、十字链表和邻接多重表。此外,还探讨了图的遍历方法,包括广度优先遍历和深度优先遍历。
摘要由CSDN通过智能技术生成

术语

  • 图——由结点的有穷集合V和边的集合E组成,在图中,结点常被称为顶点,若两个顶点之间存在一条边,则表示两个顶点相邻。
  • 有向图——图的每条边都有方向。
  • 无向图——图的每条边没有方向。
  • 弧——有向图中,常将边称为弧,含箭头的一端称为弧头,另一端称为弧尾,记作 < v i , v j v_i,v_j vi,vj>,表示从顶点 v i v_i vi 到顶点 v j v_j vj 有一条边。
  • 顶点的度——无向图中,边记作 ( v i , v j v_i,v_j vi,vj),它等价于在有向图中存在 < v i , v j v_i,v_j vi,vj> 和 < v j , v i v_j,v_i vj,vi> 两条边。与顶点 v 相关的边的条数称为顶点 v 的度。
  • 顶点的入度、出度——有向图中,指向顶点 v 的边的条数称为顶点 v 的入度,由顶点 v 出发的边的条数称为顶点 v 的出度。
  • 有向完全图和无向完全图——若有向图中有 n 个顶点,则最多有 n(n-1) 条边,将具有 n(n-1)条边的有向图称为有向完全图,若无向图中有 n 个顶点,则最多有 n(n-1)/2 条边,将具有 n(n-1)/2 条边的无向图称为完全无向图。
  • 路径和路径长度——在一个图中,路径为相邻顶点序偶所构成的序列。路径长度指路径上边的数目。
  • 简单路径——序列中顶点不重复出现的路径。
  • 回路——若一条路径中第一个顶点和最后一个顶点相同,则这条路径是一条回路。
  • 连通、连通图和连通分量——在无向图中,如果从顶点 v i v_i vi 到顶点 v j v_j vj 有路径,则称 v i v_i vi v j v_j
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值