PointCNN 论文翻译解析

1. 前言

卷积神经网络在二维图像的应用已经较为成熟了,但 CNN 在三维空间上,尤其是点云这种无序集的应用现在研究得尤其少。山东大学近日公布的一项研究提出的 PointCNN 可以让 CNN 在点云数据的处理刷新了多项深度学习任务的纪录。由于项目需要,我对PointCNN论文的核心部分做了翻译及部分解析,希望能够帮助大家更好地学习理解PointCNN。

2. 概述

Fig1

如Fig1,传统的卷积作用在二维图像上。在图像中数据是结构化存储的。直接对图像应用卷积核 就能从这种二维空间结构中获取信息。而点云数据是无序集,如果直接使用卷积会出现(1)中ii,iii,iv的情况
直接卷积
如上图所示,由于卷积操作的性质, fii f i i fiii f i i i 的计算结果总是相等的,而 fiii f i i i fiv f i v 的计算结果在大多数情况是不相等的。很显然,直接卷积会导致形状信息的变形并且使卷积结果对于顺序敏感。

而PointCNN里采用的是这样的策略:

从前一层的数据中取K个候选点 (p1,p2,...pK) ( p 1 , p 2 , . . . p K ) ,使用MLP(多层感知器)来学习一个 K×K K × K 的变换矩阵(X-transformation,X变换)也就是说 X=MLP(p1,p2,...pK) X = M L P ( p 1 , p 2 , . . . p K ) ,然后用它同时对输入特征进行加权和置换,最后对经过变换的特征应用典型卷积。我们称这个过程为X-Conv,它是PointCNN的基本构建模块。

对(1)中的 (ii),(iii),和(iii)的X-conv可以表示成这样:
1527487472886

在这里 这些 X变换 是4×4的矩阵,因为Fig1中K=4。

因为 Xii X i i Xiii X i i i 是从不同形状的点集中学习得到的变换,它们可以对不同的点对应的进行加权,因此使得 fii f i i 不再等于 fiii f i i i

对于 iii i i i iv i v ,如果我们通过学习使得 Xiii=Xiv×Π X i i i = X i v × Π Π Π 是一个排序矩阵用来将 (c,a,b,d) ( c , a , b , d ) 变成 (a,b,c,d) ( a , b , c , d ) ,就可以实现 fiiifiv f i i i ≡ f i v

从Fig1 中的例子分析可以看出,当X-Conv 搭配 理想的X变换 时,能够在考虑点集形状的同时,不依赖于输入点的顺序。

在实验中,我们发现学习到的X变换并不是很理想,特别是在排序等价性方面。

尽管如此,使用X-Conv构建的PointCNN仍然明显优于直接对点云应用传统卷积,相比为点云数据设计的最先进的非卷积神经网络(例如,PointNet ++)有着相近甚至更好的表现。

3. 分层卷积

类比图像CNN的卷积,图像CNN的输入是

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值