Dynamic Parallelism 机制实现两个 cuda kernel 动态并行的示例

1,简介 Dynamic Parallelism

Dynamic Parallelism 是 CUDA 的一项特性,允许一个 CUDA kernel 在 GPU 上直接启动其他 CUDA kernel,而无需返回主机。这种特性使得在 GPU 上可以实现更复杂的并行计算模式,特别适用于递归算法、分层次计算和自适应网格细化等场景。

2,示例一:kernel 启动单个 kernel

#include <iostream>
#include <cuda_runtime.h>

// 子 kernel,计算每个元素的平方
__global__ void childKernel(int* data, int n) {
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    if (idx < n) {
        data[idx] +=100;
    }
}

// 父 kernel,启动子 kernel
__global__ void parentKernel(int* data, int n) {
    // 假设每个 block 处理 256 个元素
    int threadsPerBlock = 1024;
    int blocks = (n + threadsPerBlock - 1) / threadsPerBlock;

    // 启动子 kernel
    childKernel<<<blocks, threadsPerBlock>>>(data, n);

    // 等待子 kernel 完成
//    cudaDeviceSynchronize();
}

// 主机代码
int main() {
    const int n = 1024*1024*512;
    int* h_data = new int[n];
    int* d_data;

    // 初始化数据
    for (int i = 0; i < n; ++i) {
        h_data[i] = i;
    }

    // 分配设备内存
    cudaMalloc(&d_data, n * sizeof(int));
    cudaMemcpy(d_data, h_data, n * sizeof(int), cudaMemcpyHostToDevice);

    // 启动父 kernel
    parentKernel<<<1, 1>>>(d_data, n);

    // 复制结果回主机
    cudaMemcpy(h_data, d_data, n * sizeof(int), cudaMemcpyDeviceToHost);

    // 输出结果
    for (int i = 0; i < 10; ++i) {
        std::cout << h_data[i] << " ";
    }
    std::cout << std::endl;

    // 清理
    delete[] h_data;
    cudaFree(d_data);

    return 0;
}

编译:

 nvcc hello.cu -rdc=true -arch=sm_75 -lcudart -Xcompiler -lcudadevrt

或者Makefile:


DEV_FLAGS :=  -rdc=true -arch=sm_75 -Xcompiler

EXE := hello

aLL: $(EXE)

%: %.cu
	nvcc $< -o $@ $(DEV_FLAGS) -lcudart -lcudadevrt

.PHONY: clean
clean:
	-rm -rf $(EXE)

运行:

 

3,示例二:kernel 启动两个 kernel

#include <iostream>
#include <cuda_runtime.h>

// data[2k] += 100;
__global__ void childKernel_A(int* data, int n) {
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    if (idx < n/2) {
        data[2*idx] += 100;
    }
}

//data[2k+]  += 200;
__global__ void childKernel_B(int* data, int n) {
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    if (idx < n/2) {
        data[2*idx+1] += 200;
    }
}
// launch kernels
__global__ void parentKernel(int* data, int n) {

	if(threadIdx.x==0){
		int threadsPerBlock = 1024;
		int blocks = (n/2 + threadsPerBlock - 1) / threadsPerBlock;

		childKernel_A<<<blocks, threadsPerBlock>>>(data, n);
		 //cudaDeviceSynchronize();
	}
	else if(threadIdx.x==1){
		
		int threadsPerBlock = 1024;
		int blocks = (n/2 + threadsPerBlock - 1) / threadsPerBlock;

		childKernel_B<<<blocks, threadsPerBlock>>>(data, n);
	}
}


int main() {
    const int n = 1024*1024*512;
    int* h_data = new int[n];
    int* d_data;

    for (int i = 0; i < n; ++i) {
        h_data[i] = i;
    }


    cudaMalloc(&d_data, n * sizeof(int));
    cudaMemcpy(d_data, h_data, n * sizeof(int), cudaMemcpyHostToDevice);

    parentKernel<<<1, 2>>>(d_data, n);


    cudaMemcpy(h_data, d_data, n * sizeof(int), cudaMemcpyDeviceToHost);

   
    for (int i = 0; i < 10; ++i) {
        std::cout << h_data[i] << " ";
    }
    std::cout << std::endl;


    delete[] h_data;
    cudaFree(d_data);

    return 0;
}

 nvcc hello.cu -rdc=true -arch=sm_75 -lcudart -Xcompiler -lcudadevrt

运行:

4,总结:


4.1 优势

减少主机干预: 通过在设备上直接启动子 kernel,减少了主机与设备之间的通信开销。
简化代码结构: 允许在 GPU 上实现更复杂的控制流和计算模式。
提高性能: 在某些场景下,通过减少主机干预和优化并行计算,可以提高整体性能。

4.2 使用场景

需要与其他 GPU 计算框架集成,需要精细控制 GPU 资源和行为。
递归算法: 如快速排序、树形数据结构遍历。
自适应网格细化: 在计算流体力学和其他科学计算中。
分层次计算: 如多级网格方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值