基于蒙特卡洛法的场景生成与K-means聚类削减:风电、光伏、负荷实现不确定性出力优化,基于蒙特卡洛法和K-means聚类的风电光伏负荷场景生成与削减

蒙特卡洛法场景生成+K-means聚类并削减
风电、光伏、负荷
Matlab
通过概率模型并根据weibull、beta、正态分布生成500次风电光伏、负荷场景,此基础上,基于Kmeans算法,分别对源荷场景进行聚类,从而实现大规模场景的削减,削减到5个场景,最后得出每个场景的概率与每个对应场景相乘求和得到不确定性出力

ID:981697708806612

万物不及DNZ


蒙特卡洛法场景生成+K-means聚类并削减
风电、光伏、负荷
Matlab

随着可再生能源的快速发展和普及,风电和光伏等可再生能源的场景生成和预测成为了研究的热点。为了实现对风电、光伏和负荷等能源场景的准确预测和分析,本文基于概率模型和K-means聚类算法提出了一种场景生成与削减的方法。通过概率模型分析,结合weibull、beta和正态分布等概率分布模型,我们能够生成500次风电、光伏和负荷场景的数据。

在场景生成阶段,我们以风电、光伏和负荷的历史数据为基础,运用蒙特卡洛模拟方法,结合概率模型的参数估计,生成了500组风电、光伏和负荷数据。通过这种方式,我们能够模拟出不同天气条件下的风电和光伏输出以及负荷需求。这些场景数据为后续的能源分析和优化提供了基础。

然而,由于场景生成的数据量庞大,对于大规模的数据集,直接进行分析和处理会占用大量的计算资源和时间。为了解决这个问题,本文采用了K-means聚类算法对风电、光伏和负荷场景进行削减和压缩。通过K-means算法,我们可以将500个场景聚类为5个簇,从而大幅减少数据量。

在聚类过程中,我们首先将500个场景数据输入到K-means算法中,根据数据的相似性将其划分为5个簇。每个簇代表了一类相似的场景,例如相似的风速、光照强度和负荷需求等。通过聚类的结果,我们可以得到5个代表性的场景,这些场景能够较好地反映整体数据集的特征。

接下来,我们需要计算每个场景的概率。在削减后的数据集中,每个场景的概率等于该场景在原始数据集中的概率之和。通过这种方式,我们能够得到每个场景的概率,并且能够准确地描述不确定性出力。

通过蒙特卡洛法场景生成和K-means聚类算法的应用,我们能够从大规模的风电、光伏和负荷数据中提取出代表性的场景,并且能够准确地描述不同场景下的不确定性出力。这对于制定风电、光伏和负荷的运营策略和决策具有重要意义。同时,通过场景生成和削减的方法,我们能够减少数据的维度和计算量,提高了能源分析和优化的效率。

在实际应用中,本文提出的方法可以为能源管理系统、电力市场交易和能源规划等领域提供参考。

【相关代码,程序地址】:http://fansik.cn/697708806612.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值