提升 RAG 效果的实践

0. 引言

AI 大语言模型的主要应用方式之一就是 RAG,接下来计划陆续分享工作中提升 RAG 效果的一些实践。

首先分享一些测试结果,这些测试结果可以帮助我们去做一些技术上的选型和模型上的选型。

  1. 此博文会持续更新,如果你觉得这个文章对你有帮助,欢迎点赞和收藏。
  2. 工作上我主要支持的区域是日本,所以博文中会或多或少包括一些日语。

1. 测试数据

测试数据使用的是公开的 AWS 词汇表,我测试的是日语的 AWS 用語集

2. cohere/embed-multilingual-v3.0 的几组测试结果

2-1. 第1组测试

前提条件:

  • テスト・データ:AWS 用語集
  • チャンク・サイズ(Chunk Size):1000
  • チャンク・オーバーラップ(Chunk Overlap):200
  • Embedding 模型:cohere/embed-multilingual-v3.0
  • Rerank 模型:BAAI/bge-reranker-v2-minicpm-layerwise-28
  • LLM 模型:Cohere Command-r、Claude Opus、Claude Sonnet、Google Gemini Pro

第1个问题的答案截图:

第1个问题:Kendraとは?
结果评论:Cohere Command-r回答正确、Claude Opus回答正确、Claude Sonnet 回答正确。Google Gemini Pro回答正确。

在这里插入图片描述

第2个问题的答案截图:

第2个问题:着信トラフィックを分散させるには?
结果评论:Cohere Command-r 回答正确 。Claude Opus回答正确。Claude Sonnet回答正确,但是啰嗦 。Google Gemini Pro回答正确。

在这里插入图片描述

第3个问题的答案截图:

第3个问题:ディストリビューションとは?
结果评论:Cohere Command-r回答正确 。Claude Opus回答正确。Claude Sonnet回答正确。Google Gemini Pro回答正确。

在这里插入图片描述

第4个问题的答案截图:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值