大模型里面常说的Embedding(嵌入)是什么

什么是Embedding

Embedding(嵌入)是机器学习和自然语言处理(NLP)中的一种关键技术,其核心思想是将高维、离散、非结构化的数据(如文字、图像、用户行为等)转换为低维、连续、稠密的向量表示。这些向量不仅能被计算机高效处理,还能捕捉数据之间的潜在关系(如语义、相似性等)。例如:

文字:单词“猫” → 向量 [0.3, -0.8, 1.2, …, 0.5]

图像:一张猫的图片 → 向量 [0.7, 0.1, -0.3, …, 0.9]

用户行为:用户点击商品A → 向量 [0.4, -0.2, 0.6, …, 0.1]

在这里插入图片描述
Embedding Projector:https://projector.tensorflow.org/


为什么需要Embedding?

  1. 解决高维稀疏问题

    例如,用传统One-hot编码表示一个包含10万单词的词典,每个单词会变成一个10万维的向量,其中仅有一个位置是1,其余全为0。这种稀疏表示效率低下,且无法表达单词之间的关系(如“猫”和“狗”都是动物,但它们的One-hot向量正交,相似度为0)。
    Embedding通过降维(如压缩为300维)解决了这一问题,同时保留了关键信息。

  2. 捕捉语义和关联性

    • Embedding的向量空间中,语义或功能相似的对象(如“猫”和“狗”)距离较近,而差异大的对象(如“猫”和“汽车”)距离较远。这种特性使模型能更好地理解数据。

    • 语义相似性:

      • 词向量:向量(“国王”) - 向量(“男”) + 向量(“女”) ≈ 向量(“女王”)

      • 句子向量:相似度(向量(“今天天气好”), 向量(“阳光明媚”)) 接近1。

    • 视觉关联:猫和狗的图片向量距离较近,而猫和汽车的向量距离较远。

  3. 实现跨领域知识迁移

    • 预训练Embedding:在大规模数据上训练的通用Embedding(如BERT、GPT)可迁移到不同任务,减少数据标注成本。

    • 跨领域对齐:将不同领域的数据映射到同一向量空间,实现知识融合。

      • 例如:将用户购物行为(电商)和观看历史(视频平台)的Embedding结合,实现跨平台推荐。
  4. 解决非结构化数据处理难题

    • 非结构化数据(如文本、图像、音频)难以直接被算法处理,Embedding将其转化为结构化向量,使模型能够“理解”数据。

      文本:单词、句子、文档 → 向量。
      图像:图片 → 向量(通过CNN提取特征)。
      行为数据:用户点击序列 → 向量(如RNN、Transformer编码)。

  5. 支撑复杂模型的底层架构
    几乎所有深度学习模型都依赖Embedding作为输入层:

    NLP模型:BERT、Transformer的输入是词/子词Embedding。
    推荐模型:DeepFM、YouTube推荐算法将用户和商品ID映射为Embedding。
    图神经网络:节点Embedding(如Node2Vec)用于社交网络分析。

Embedding的技术原理

如何生成Embedding?

Embedding的生成依赖于机器学习模型,其核心思想是让模型在任务中自动学习数据的内在规律。常见的生成方式包括:

方法原理典型案例
无监督学习利用数据自身的结构(如上下文、共现关系)生成向量。Word2Vec、GloVe、Node2Vec
监督学习通过标签任务(如分类、预测)间接学习向量。BERT、图像分类模型
预训练+微调在大规模数据上预训练通用Embedding,再针对特定任务微调。GPT-3、CLIP(图文跨模态)

经典模型解析

  • Word2Vec:通过“上下文预测中心词”(CBOW)或“中心词预测上下文”(Skip-Gram)学习词向量。
    示例:模型发现“猫”和“狗”常出现在相似上下文中,因此它们的向量距离相近。

  • BERT:基于Transformer的双向编码器,通过掩码语言模型(MLM)和句子预测任务生成上下文相关的动态Embedding。
    优势:同一词在不同语境中有不同向量(如“苹果”在“吃苹果”和“苹果手机”中含义不同)。

  • CNN图像嵌入:卷积神经网络通过逐层提取边缘、纹理、物体部件等特征,最终生成图像的紧凑表示。

  • 词嵌入(Word Embedding)

    • 输入:单词“apple” → 输出:[0.25, -0.1, 0.7, …, 0.4](300维向量)。

    • 语义相似性:cosine_similarity(向量(“猫”), 向量(“狗”)) 接近1,而 cosine_similarity(向量(“猫”), 向量(“电脑”)) 接近0。

Embedding的四大应用场景

  1. 自然语言处理(NLP)

    • 语义搜索:将用户查询与文档转化为向量,通过相似度匹配结果(如Google搜索)。

    • 机器翻译:跨语言Embedding对齐(如将中英文映射到同一空间)。

    • 情感分析:通过向量判断文本情感极性(正面/负面)。

  2. 推荐系统

    • 协同过滤:用户和商品Embedding的点击行为矩阵分解(如Netflix推荐)。

    • 跨域推荐:利用用户行为Embedding实现跨平台推荐(如从电商到视频平台)。

  3. 计算机视觉

    • 图像检索:输入“夕阳照片”,返回相似向量对应的图片。

    • 人脸识别:将人脸图像映射为特征向量,对比欧氏距离判断身份。

  4. 图数据分析

    • 社交网络:用户Embedding可用于社群发现或影响力预测。

    • 知识图谱:实体Embedding支持智能问答(如“姚明的妻子是谁?”)。

Embedding在RAG引擎中的工作流

在这里插入图片描述
【流程说明】

  1. 查询嵌入化:将用户输入的查询传递给嵌入模型,并在语义上将查询内容表示为嵌入的查询向量。

  2. 向量数据库查询:将嵌入式查询向量传递给向量数据库。

  3. 检索相关上下文:检索前k个相关上下文——通过计算查询嵌入和知识库中所有嵌入块之间的距离(如余弦相似度)来衡量检索结果。

  4. 上下文融合:将查询文本和检索到的上下文文本传递给对话大模型(LLM)。

  5. 生成回答:LLM 将使用提供的内容生成回答内容。

常见的Embedding模型

Huggingface上的mteb是一个海量Embeddings排行榜,定期会更新Huggingface开源的Embedding模型各项指标,进行一个综合的排名,大家可以根据自己的实际应用场景,选择适合自己的Embedding模型。
在这里插入图片描述

MTEB(Massive Text Embedding Benchmark)是一个用于评估文本嵌入**(Embedding)**模型的综合性基准测试平台。通过多任务和多数据集的组合,MTEB可以全面衡量不同Embedding模型在各种自然语言处理(NLP)任务中的表现,如文本分类、语义检索、文本聚类等。
在这里插入图片描述

在这里插入图片描述
以下是基于模型名称和行业常见设计逻辑推测的 12款Embedding模型简介、特点及适用场景,仅供参考:


1. gemini-embedding-exp-03-07

  • 简介:Google Gemini系列实验性Embedding模型,可能基于多模态架构设计。

  • 特点:

    • 多模态支持(文本、图像等);

    • 高维语义捕捉能力;

    • 实验性质,可能未完全开放。

  • 适用场景:多模态搜索、跨模态内容推荐、前沿研究。


2. ling-Embed-Mistral

  • 简介:基于Mistral架构优化的轻量级Embedding模型,专注语言嵌入。

  • 特点:

    • 轻量化(参数量较小);

    • 低资源环境下高效推理;

    • 支持多语言。

  • 适用场景:移动端应用、实时语义检索、低资源设备部署。


3. gte-Qwen2-7B-instruct

  • 简介:阿里通义千问(Qwen)系列的7B参数版本,支持指令微调的通用Embedding模型。

  • 特点:

    • 大规模参数(7B)带来强表征能力;

    • 支持任务指令动态适配;

    • 中文场景优化。

  • 适用场景:中文语义理解、复杂问答系统、长文本编码。


4. multilingual-e5-large-instruct

  • 简介:微软E5系列的多语言增强版本,支持指令驱动的Embedding生成。

  • 特点:

    • 覆盖100+语言;

    • 指令微调提升任务适配性;

    • 适合长文本编码。

  • 适用场景:跨语言检索、多语言内容分类、全球化应用。


5. SFR-Embedding-Mistral

  • 简介:SFR-Embedding-Mistral 是一款专门优化的嵌入模型,适合特定的高效检索任务。

  • 特点:

    • 领域适配(如医疗、法律);

    • 结合领域知识增强语义表征;

    • 模型轻量。

  • 适用场景:垂直领域搜索、专业文档分析、知识图谱构建。


6. GritLM-7B

  • 简介:一种生成式表征指令调整语言模型,专注复杂语义解析。

  • 特点:

    • 细粒度实体/关系抽取;

    • 高精度长文本建模;

    • 需较高算力。

  • 适用场景:知识抽取、复杂问答、学术文献分析。


7. text-multilingual-embedding-002

  • 简介:通用多语言Embedding模型(可能为开源社区或企业级产品)。

  • 特点:

    • 平衡多语言支持与性能;

    • 中等模型规模;

    • 易于部署。

  • 适用场景:多语言搜索、跨语言推荐、中小型企业应用。


8. GritLM-8x7B

  • 简介:GritLM系列的混合专家(MoE)版本,8x7B参数,性能更强。

  • 特点:

    • 混合专家架构提升效率;

    • 支持超长上下文(如10万tokens);

    • 资源消耗较高。

  • 适用场景:超长文本编码、多模态融合分析、高精度语义匹配。


9. e5-mistral-7b-instruct

  • 简介:结合Mistral架构优化的E5指令微调版本,7B参数。

  • 特点:

    • 指令驱动动态适配任务;

    • 多语言支持;

    • 兼顾性能与效率。

  • 适用场景:交互式搜索、个性化推荐、动态场景适配。


10. Cohere-embed-multilingual-v3.0

  • 简介:Cohere公司的多语言Embedding商业模型,支持大规模部署。

  • 特点:

    • 工业级稳定性;

    • 高并发支持;

    • 多语言优化(侧重英语、欧洲语言)。

  • 适用场景:企业级搜索、广告推荐、全球化SaaS服务。


11. gte-Qwen2-1.5B-instruct

  • 简介:阿里通义千问的轻量级版本(1.5B参数),支持指令微调。

  • 特点:

    • 低资源消耗;

    • 快速推理;

    • 中文场景优先。

  • 适用场景:中文短文本处理、实时对话系统、边缘计算场景。


12. bilingual-embedding-large

  • 简介:专注双语(如中英、英法)对齐的Embedding模型。

  • 特点:

    • 双语语义空间对齐;

    • 跨语言检索优化;

    • 模型规模适中。

  • 适用场景:机器翻译、双语内容检索、跨语言知识库构建。

Embedding模型选型总结(仅供参考)

  1. 按场景需求:
  • 多语言:multilingual-e5-large-instruct、Cohere-embed-multilingual-v3.0;

  • 中文优先:gte-Qwen2系列、bilingual-embedding-large;

  • 垂直领域:SFR-Embedding-Mistral、GritLM系列;

  • 轻量级:ling-Embed-Mistral、gte-Qwen2-1.5B-instruct。

  1. 按资源条件:
  • 高算力:GritLM-8x7B、gemini-embedding-exp-03-07;

  • 低成本:text-multilingual-embedding-002、ling-Embed-Mistral。

  1. 按任务类型:
  • 搜索/推荐:Cohere-embed-multilingual-v3.0、e5-mistral-7b-instruct;

  • 知识密集型:GritLM-7B、gte-Qwen2-7B-instruct;

  • 实时交互:gte-Qwen2-1.5B-instruct、ling-Embed-Mistral。

  1. 核心原则:
  • 明确需求:优先匹配场景(多语言、垂直领域、资源限制);

  • 平衡性能与成本:大模型适合高精度任务,轻量模型适合高频实时场景;

  • 关注生态支持:商业模型(如Cohere)提供稳定性,开源模型(如E5)灵活性更高。

<think>好的,用户现在问的是“Embedding 嵌入模型是什么意思”。之前他问过关于Workflow文档上传数量的问题,现在转向了嵌入模型的概念。我需要先理解他的需求。可能他正在学习机器学习或自然语言处理的基础知识,或者在开发相关应用时遇到了这个概念。 首先,嵌入模型的定义。需要简明扼要地解释,这是将高维数据(如文字、图片)转换为低维向量的技术。然后,说明其作用,比如捕捉语义信息,用于下游任务。可能用户需要知道为什么嵌入模型重要,或者如何使用它。 接下来,要考虑用户可能的背景。他之前问的是技术配置问题,可能有一定的技术基础,但需要基础解释。所以要用通俗易懂的语言,避免过于学术化的术语,但也要准确。 然后,应用场景。用户可能想知道嵌入模型在哪些地方使用,比如搜索、推荐、文本分类等。结合他之前的问题,可能他在构建一个应用,需要处理文档,所以可以举一些文档处理的例子,比如文档相似性比较,聚类分析。 另外,常见模型部分需要提到一些主流的模型,比如Word2Vec、BERT,以及OpenAI的text-embedding-ada-002。这些例子能帮助用户了解实际应用中的模型选择。 还要注意对比传统方法,比如TF-IDF,说明嵌入模型的优势,比如能捕捉语义而非仅仅词频。这能帮助用户理解为什么现在更倾向于使用嵌入模型。 最后,注意事项部分,用户可能需要实际应用中的问题,比如维度选择、领域适配、计算成本。这些点能帮助他避免常见错误,优化应用。 需要检查是否有之前的信息需要关联,比如他在处理文档上传时可能需要嵌入模型来处理向量存储,所以可以提到向量存储与嵌入模型的关系,呼应之前的回答。例如,之前提到Vector Storage是5MB,可能嵌入模型生成的向量会占用这个存储空间,所以维度选择会影响存储使用。 确保回答结构清晰,分点明确,使用户能够逐步理解。可能需要用比喻,比如将嵌入模型比作翻译器,把数据转化为机器理解的数字形式。这样更直观。 总结下来,回答的结构应该是:定义、核心作用、如何工作、应用场景、常见模型、对比传统方法、注意事项。这样逻辑清晰,覆盖用户可能的疑问点。同时,结合之前的对话,确保信息连贯,帮助用户构建完整的知识框架。</think>以下是关于 **Embedding 嵌入模型** 的简明介绍: --- ### **定义** **Embedding嵌入模型** 是一种将 **高维、离散的数据**(如文字、图像、音频)转换为 **低维、连续的数值向量** 的数学模型。 这些向量(即“嵌入向量”)能够捕捉原始数据的 **语义、关联性或特征**,使机器更高效地理解和处理复杂信息。 --- ### **核心作用** 1. **语义编码** - 将抽象概念(如单词、句子)映射为向量空间中的坐标点,语义相近的内容在向量空间中的距离更近。 - *例*:`“猫”` 和 `“狗”` 的向量距离 < `“猫”` 和 `“汽车”` 的距离。 2. **降维与泛化** - 将高维稀疏数据(如One-Hot编码的单词)压缩为低维稠密向量,减少计算成本,同时保留关键信息。 - *例*:将50,000维的词典压缩为300维向量。 3. **跨模态对齐** - 将不同模态数据(文本、图片)映射到同一向量空间,实现跨模态关联。 - *例*:用文本搜索匹配的图片(CLIP模型)。 --- ### **如何工作?** 1. **输入**:原始数据(如句子、图像像素)。 2. **模型处理**:通过神经网络(如Transformer、CNN)提取特征,生成固定长度的向量。 3. **输出**:低维向量(如300~1024维),可用于后续任务(分类、检索等)。 --- ### **常见应用场景** | 领域 | 用途 | 示例模型 | |----------------|------------------------------------------|-----------------------------| | **自然语言处理** | 文本相似度、机器翻译、问答系统 | Word2Vec、BERT、GPT-3 | | **计算机视觉** | 图像搜索、目标检测 | ResNet、CLIP | | **推荐系统** | 用户/商品特征建模,生成个性化推荐 | Matrix Factorization | | **语音处理** | 声纹识别、语音转语义 | Wav2Vec | --- ### **典型嵌入模型示例** 1. **Word2Vec** - 生成单词向量,通过上下文预测(CBOW/Skip-Gram)。 - *输出*:`“king” - “man” + “woman” ≈ “queen”`。 2. **BERT** - 基于上下文的动态词向量,同一单词在不同语境中有不同嵌入。 - *例*:`“苹果手机”` vs `“吃苹果”` 中的“苹果”向量不同。 3. **OpenAI text-embedding-ada-002** - 通用文本嵌入模型,支持长文本和跨语言任务。 --- ### **与传统方法的对比** | | 传统方法(如TF-IDF) | 嵌入模型 | |------------------|----------------------------|----------------------------| | **语义理解** | 仅统计词频,忽略上下文语义 | 捕捉深层语义和关联性 | | **数据效率** | 依赖人工特征工程 | 自动学习特征,适应复杂模式 | | **泛化能力** | 对新词/罕见场景效果差 | 迁移学习能力强(预训练+微调) | --- ### **注意事项** 1. **维度选择**:维度越高表达能力越强,但可能过拟合或增加计算成本。 2. **领域适配**:通用嵌入模型(如BERT)在专业领域(医学、法律)可能需微调。 3. **计算成本**:部分模型(如大语言模型)生成嵌入较慢,需权衡实时性需求。 --- Embedding 技术是现代AI的核心基础,广泛应用于搜索、推荐、内容理解等场景。如果需要更具体的实现细节或选型建议,可以进一步说明需求! 🚀
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kuokay

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值