小学生都能懂的 UMAP(Uniform Manifold Approximation and Projection)说明

小学生都能懂的 UMAP(Uniform Manifold Approximation and Projection)说明

1. 什么是UMAP?

UMAP(Uniform Manifold Approximation and Projection)是一种数学方法,用来把数据从高维度的空间简化到低维度的空间。简单来说,它就像把一个复杂的东西压缩成一个简单的东西,但还保持原来的样子。

2. UMAP有什么用?

UMAP有两个主要的用途:

  1. 支持聚类:帮助我们找到数据中的自然分组。
  2. 降维:把高维度的数据压缩到低维度,这样我们可以更容易地观察和理解它。

3. 示例解释

3-1. 故事:给颜色分类

想象一下你有很多不同颜色的珠子,但这些珠子颜色非常多,有很多种不同的红、蓝、绿。你想把这些珠子按颜色分类,但颜色太多了,不好分。

  1. 高维数据

    • 每个珠子有很多种颜色成分,比如红色成分、蓝色成分、绿色成分。
    • 这些成分就像是珠子的特征,每个珠子有很多个特征,这就是高维数据。
  2. 降维

    • 我们用UMAP把这些高维数据(很多颜色成分)压缩到低维数据(比如2维或者3维)。
    • 就像是用少量的颜色成分来代表每个珠子,这样我们更容易看出珠子之间的相似性。
  3. 自然分组

    • UMAP会根据珠子之间的相似性,把它们在低维空间中摆放得很接近。
    • 这样我们可以很容易地看出哪些珠子颜色相似,哪些不相似。

4. 简单代码示例

import numpy as np
import umap
import matplotlib.pyplot as plt

# 假设我们有一些高维数据,每个数据点有5个特征
data = np.random.rand(100, 5)

# 用UMAP把数据从5维压缩到2维
reducer = umap.UMAP(n_components=2, random_state=42)
embedding = reducer.fit_transform(data)

# 画出压缩后的数据
plt.scatter(embedding[:, 0], embedding[:, 1])
plt.title("UMAP降维后的数据")
plt.show()

4-1. 解释

  1. 数据点:我们有100个数据点,每个数据点有5个特征(比如不同颜色成分)。
  2. UMAP降维:我们用UMAP把这些5维的数据压缩到2维,这样我们可以在2维平面上画出来。
  3. 结果展示:我们画出压缩后的数据,可以看到这些数据点在2维平面上的分布。相似的珠子会靠得很近,不相似的会离得远一些。

通过这个故事和示例,希望你能更好地理解UMAP(Uniform Manifold Approximation and Projection)的基本概念和它是如何工作的!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值