什么是 F1 分数?——用小学生都能理解的方式解释

在机器学习和数据分析中,我们经常需要评价一个模型的好坏。除了常见的准确率(Accuracy),还有两个非常重要的指标:精确率(Precision)召回率(Recall)。而 F1 分数(F1 Score) 就是用来平衡这两个指标的综合评分。今天,我们就用最简单的方式,带你彻底理解 F1 分数!


1. 精确率和召回率是什么?

精确率(Precision)

精确率表示模型预测为正例的样本中,有多少是真正的正例。
公式:
Precision = True Positives (TP) True Positives (TP) + False Positives (FP) \text{Precision} = \frac{\text{True Positives (TP)}}{\text{True Positives (TP)} + \text{False Positives (FP)}} Precision=True Positives (TP)+False Positives (FP)True Positives (TP)

简单理解:你预测了多少宝藏,其中有多少是真的宝藏。

召回率(Recall)

召回率表示实际为正例的样本中,有多少被模型预测出来了。
公式:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值