什么是 F1 分数?——用小学生都能理解的方式解释
在机器学习和数据分析中,我们经常需要评价一个模型的好坏。除了常见的准确率(Accuracy),还有两个非常重要的指标:精确率(Precision) 和 召回率(Recall)。而 F1 分数(F1 Score) 就是用来平衡这两个指标的综合评分。今天,我们就用最简单的方式,带你彻底理解 F1 分数!
1. 精确率和召回率是什么?
精确率(Precision)
精确率表示模型预测为正例的样本中,有多少是真正的正例。
公式:
Precision = True Positives (TP) True Positives (TP) + False Positives (FP) \text{Precision} = \frac{\text{True Positives (TP)}}{\text{True Positives (TP)} + \text{False Positives (FP)}} Precision=True Positives (TP)+False Positives (FP)True Positives (TP)
简单理解:你预测了多少宝藏,其中有多少是真的宝藏。
召回率(Recall)
召回率表示实际为正例的样本中,有多少被模型预测出来了。
公式: