Dify 使用 reasoning 模型时不显示 think 过程的解决方法

在这里插入图片描述

1. 设置开始节点

在这里插入图片描述

2. 设置一个 LLM 节点

在这里插入图片描述

3. 设置一个条件分支

在这里插入图片描述

4-1. 设置一个模版转换

在这里插入图片描述

4-2. 设置一个代码执行


import re

def main(text: str) -> dict:
    cleaned_answer = re.sub(r'<think[^>]*>.*?</think>', '', text, flags=re.DOTALL)
    final_answer = re.sub(r'^\n+', '', cleaned_answer)
    return {
        "result": final_answer
    }

在这里插入图片描述

5. 设置一个变量聚合器

在这里插入图片描述

6. 设置一个结束节点

在这里插入图片描述

7-1. 测试:不显示 think 过程

在这里插入图片描述
在这里插入图片描述

7-2. 测试:显示 think 过程

在这里插入图片描述
在这里插入图片描述


参考文章:
Dify工作流如何屏蔽DeepSeek-R1的思考内容?来看看解决方案吧!!!

<think>好的,用户想了解或使用Dify作为AI代理的实现或使用信息。我需要先回忆一下Dify的相关知识。Dify是一个开源的LLM应用开发平台,支持构建基于大语言模型的AI代理和应用程序。用户可能想知道如何具体实施或使用它作为AI代理。 首先,我应该介绍Dify的基本概念和核心功能,比如可视化编排和多种模型支持。然后,可能需要分步骤说明如何实现AI代理,包括安装、创建应用、配置Agent工具等。同,用户可能关心具体的代码示例,所以需要提供API调用或配置文件的例子。 还要考虑用户可能的后续问题,比如性能优化、多模型集成或者企业级应用场景,因此生成相关问题会有帮助。需要确保使用正确的LaTeX格式,比如变量用$...$,独立公式用$$...$$。另外,引用部分要正确标注,比如引用提供的资料中的[^1]和[^2]。 需要检查是否有遗漏的关键点,比如Dify的RAG引擎、支持的模型类型,或者如何扩展自定义工具。确保回答结构清晰,步骤明确,用户能按指南操作。最后,验证所有技术术语和流程的正确性,避免错误信息。</think>### Dify作为AI代理的实现与使用指南 Dify是一个开源的LLM应用开发平台,支持构建基于大语言模型的AI代理(Agent)和应用程序。其核心功能包括可视化编排AI工作流、支持多种模型(如GPT-4、Claude等)以及RAG引擎[^1]。 #### 一、实现AI代理的步骤 1. **环境搭建** ```bash # 使用Docker部署 git clone https://github.com/langgenius/dify cd dify && docker-compose up -d ``` 2. **创建AI应用** - 在仪表盘选择"创建空白应用" - 配置基础信息:命名空间、模型供应商(如OpenAI) - 设置API密钥:$API_KEY = os.getenv("OPENAI_API_KEY")$ 3. **配置Agent工具** ```yaml # agent_tools.yml示例 tools: - type: web_search config: engine: google max_results: 5 - type: code_interpreter enable: true ``` #### 二、核心功能实现 1. **对话流程控制** ```python from dify_client import DifyClient client = DifyClient(api_key="your_api_key") response = client.generate( inputs={"query": "查询北京天气"}, tools=["web_search", "knowledge_base"], reasoning_mode="chain_of_thought" # $f(x)=\sum_{i=1}^n w_i x_i$ ) ``` 2. **记忆机制** $$M_t = \alpha M_{t-1} + (1-\alpha)E_t$$ 其中$\alpha$为记忆衰减因子,$E_t$为当前对话的嵌入向量 #### 三、典型应用场景 1. 客服自动化(支持上下文保持[^1]) 2. 数据分析助手(集成SQL执行器) 3. 智能文档处理(基于RAG引擎) ```python # RAG实现示例 def retrieve_context(query): embedding = model.encode(query) return vector_db.search(embedding, top_k=3) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值