在DeepSeek-R1引发全球AI领域关注之际,其突破性的推理能力已通过多项测试得到验证:模型不仅将AIME数学竞赛准确率从15.6%提升至86.7%,更在Codeforces编程竞赛中超越96.3%人类参与者,展现出真实的数学直觉与迁移学习能力。然而作为纯文本模型,其官方版本存在多模态能力缺失与功能互斥的局限。
我选择通过Dify构建智能编排层:以DeepSeek-R1作为推理引擎,驱动更强大模型的多模态能力,实现文件解析与网络连接的协同运作。
在 Dify 中创建一个空白应用,选择 Chatflow 类型,打开工作区点击右上角的“功能”按钮,打开“文件上传”功能,勾选“文档”和“图片”类型。
按照上图编排工作流,核心思路就是解析文档和图片内容,交给 DeepSeek-R1 只生成推理内容,再把文档或图片以及解析到的内容和 R1 推理全部传给 Gemini 多模态模型,最终由 Gemini 来回答用户问题。
DeepSeek-R1 思考节点
DeepSeek-R1 扮演“优等生”的角色,专注于问题分解和逻辑推理。其核心任务是输出完整的思考过程,而不是直接提供答案。
在编写系统提示时,建议编写结构化提示,例如使用 XML 格式,这可以增强模型对问题任务的分解。
提示词如下:
<Role>``You are an LLM with reasoning capabilities.``Unlike other LLMs, you can output your complete thinking process.``</Role>``<Task>``Your task is to assist other LLMs that lack reasoning capabilities.``You need to output complete thinking processes for other LLMs based on user questions.``<Steps>``"Step 1": "Receive questions from users."``"Step 2": "Conduct deep reasoning and analysis on user questions."``"Step 3": "Elaborate on the reasoning process and logic, ensuring the process is complete and easy to understand."``"Step 4": "Output the complete reasoning process, no final answer needed."``</Steps>``</Task>``<Limitations>``Do not output the final answer, only output the thinking process.``Do not explain your own capabilities or limitations.``</Limitations>`` ``In addition, we need to adjust the user input content, adding the content from the doc extractor:``<User Query>``{{Start}}``</User Query>``<File>``{{text}}``</File>
Gemini 多模态节点
Gemini 是一种具有强大视觉能力的多模态模型,依靠 R1 推理框架结合多模态数据并生成最终答案。其优势在于图像解析和结果优化。注意需要在此节点中启用LLM的视觉功能以获得解析图片和文档的能力。
提示词如下:
<Role>``You are an LLM that excels at learning.``</Role>``<Task>``You need to learn from others' thinking processes about problems, enhance your results with their thinking, and then provide your answer.``<Steps>``"Step 1": "Receive thinking process from DeepSeek-R1 model."``"Step 2": "Carefully study and understand DeepSeek-R1's reasoning logic and steps."``"Step 3": "Generate final answer based on DeepSeek-R1's thinking, combined with image capabilities."``"Step 4": "Output the final answer, no need to explain the thinking process."``</Steps>``</Task>``<Limitations>``Do not repeat DeepSeek-R1's thinking process, only output the final answer.``Do not explain your own capabilities or learning process.``Ensure the answer is accurate and relevant to the question.``</Limitations>
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。