多传感器融合
Enochzhu
Per~
展开
-
聚类算法中不同数据类型dissimilarity matrix 计算
目录 一、聚类的基本数据结构 二、不同数据类型的相异度计算方法 (一)区间标度变量 (二)二元变量 (三)标称变量 (四)顺序变量 (五)比例标度型变量 (六)混合类型 三、R相异(似)度计算总结 一、聚类的基本数据结构 假设要聚类的数据集合包含 n 个数据对象,这些数据对象可能表示人,房子,文档,国家等。许多基于内存的聚类算法选择如下两种有代表性的数据结构...转载 2020-11-18 11:48:55 · 5162 阅读 · 1 评论 -
D-S证据网络相关
一、前言 20世纪60年代美国哈佛大学数学家A.P.Dempster利用上、下限概率来解决多值映射问题方面的研究工作。自1967年起连续发表了一系列论文,标志着证据理论的诞生。Dempster的学生G.Shafer对证据理论做了进一步发展,引入信任函数概念,形成了一套基于“证据”和“组合”来处理不确定性推理问题的数学方法,并于1976年出版了《证据的数学理论》(A ...转载 2020-08-04 17:03:52 · 1095 阅读 · 0 评论 -
论文笔记
目录,按发表时间顺序1.2013 Enabling Effective Programming and Flexible Management of Efficient Body Sensor Network Applications1.2013 Enabling Effective Programming and Flexible Management of Efficient Body Sensor Network Applications提供了一个专用于BSN的开源高效的信号处理编程框架,提出环境原创 2020-07-21 11:28:45 · 147 阅读 · 0 评论 -
分类器
目录最近邻神经网络支持向量机SVM贝叶斯网络AdaBoost最近邻神经网络支持向量机SVM贝叶斯网络AdaBoost原创 2020-07-15 15:42:37 · 183 阅读 · 0 评论 -
数据融合的技术/算法
本文为【《可穿戴健康检测系统数据融合》宫继兵 著 科学出版社 】部分读书笔记目录1.直接对数据源操作的方法1.1加权平均法1.2神经网络法2.基于对象的统计特性和概率模型的方法2.1 卡尔曼滤波法2.2贝叶斯估计法2.3多贝叶斯估计法2.4统计决策理论法3.基于规则推理的方法3.1证据推理法3.2产生式规则3.3模糊逻辑推理法3.4粗糙集理论1.直接对数据源操作的方法1.1加权平均法1.2神经网络法2.基于对象的统计特性和概率模型的方法2.1 卡尔曼滤波法2.2贝叶斯估计法2.3多贝叶斯估计原创 2020-07-09 21:26:58 · 4467 阅读 · 4 评论 -
多传感器信息融合及应用(何友等著)一至四章节读书笔记
目录第一章 多传感器信息融合概述1.2 多传感器信息融合的基本原理1.2.1 信息融合的基本原理1.2.2 信息融合的级别检测级融合位置级融合目标识别级融合1.数据级融合2.特征级融合3.决策级1.4多传感器信息融合技术研究的历史与现状第一章 多传感器信息融合概述1.2 多传感器信息融合的基本原理1.2.1 信息融合的基本原理信息抽象层次包括检测层、位置层、属性层、势态层和威胁层。1.2.2 信息融合的级别信息融合的级别可分为5级(JDL功能模型):检测级融合、位置级融合、属性(目标)级原创 2020-07-07 16:20:53 · 4553 阅读 · 0 评论 -
语音识别发展综述
语音识别自半个世纪前诞生以来,一直处于不温不火的状态,直到2009年深度学习技术的长足发展才使得语音识别的精度大大提高,虽然还无法进行无限制领域、无限制人群的应用,但也在大多数场景中提供了一种便利高效的沟通方式。本篇文章将从技术和产业两个角度来回顾一下语音识别发展的历程和现状,并分析一些未来趋...转载 2020-03-24 21:34:30 · 8892 阅读 · 0 评论 -
神经网络各个领域基础知识(持续更新)
计算机视觉库:opencv,dlib,pillow机器视觉特征提取算法介绍:HOG、SIFT、SURF、ORB、LBP、HAAR总结我觉得以上特征中主要分为两类:点和面点:SIFT、SURF、ORB提取的是关键点的信息,可以用于表示某些图像的细节(或者指纹)。这几个特征可用于图像匹配和3维建模等算法。面:HOG、LBP、HAAR提取的是面的信息,可以表示一块区域是什么样的,所以这几个...原创 2020-02-25 22:57:00 · 757 阅读 · 0 评论 -
图像卷积与滤波的一些知识点
...转载 2020-02-25 19:43:36 · 307 阅读 · 0 评论 -
机器视觉特征提取介绍:HOG、SIFT、SURF、ORB、LBP、HAAR
一. 概述这里主要记录自己的一些感悟,不是很系统。想要详细系统的理论,请参考文末的《图像处理之特征提取》。个人不是专业cv工程师,...转载 2020-02-25 15:54:21 · 1125 阅读 · 0 评论 -
【论文阅读】A survey of sensor fusion methods in wearable robotics
摘要由于缺少必须的传感器信息融合算法来提供最优辅助或是对使用者目的的扰动或改变的快速反应,现代穿戴式机器人还没有足够智能来完美地满足使用者的需求。传感器信息融合技术例如意图预测已经被强调作为外骨骼机器人和假肢的一个主要挑战。为了更好地测试这个领域的优缺点,这篇论文将对现有的穿戴式机器人的传感器融合方法进行综述,包括固定式的外骨骼康复机器人和便携式的活动假肢和全身外骨骼机器人。传感器融合技术最初被...原创 2020-02-25 15:43:17 · 251 阅读 · 0 评论 -
功能可供性(affordance)
概念功能可供性(affordance)认为人知觉到的内容是事物提供的行为可能而不是事物的性质,而事物提供的这种行为可能就被称为可供性。简单来说,“这个东西能干啥”。中文维基翻译为“承担特质/环境赋使”,但翻译成“能供性”会比较易于了解。应用领域:人机交互、人工智能、科技与社会、认知心理学、传播学、工业设计等起源美国心理学家詹姆斯·吉布森(James Jerome Gibson)于1977...原创 2020-02-21 17:03:39 · 2233 阅读 · 0 评论 -
特征提取与处理概述
特征提取与处理上一章案例中的解释变量都是数值,比如匹萨的直径。而很多机器学习问题需要研究的对象可能是分类变量、文字甚至图像。本章,我们介绍提取这些变量特征的方法。这些技术是数据处理的前提——序列化,更是机器学习的基础,影响到本书的所有章节。分类变量特征提取许多机器学习问题都有分类的、标记的变量,不是连续的。例如,一个应用是用分类特征比如工作地点来预测工资水平。分类变量通常用独热编码(One-...转载 2020-02-20 23:00:21 · 1208 阅读 · 0 评论 -
什么是掩膜(mask)
刚开始涉及到图像处理的时候,在opencv等库中总会看到mask这么一个参数,非常的不理解,在查询一系列资料之后,写下它们,以供翻阅。什么是掩膜(mask)数字图像处理中的掩膜的概念是借鉴于PCB制版的过程,在半导体制造中,许多芯片工艺步骤采用光刻技术,用于这些步骤的图形“底片”称为掩膜(也称作“掩模”),其作用是:在硅片上选定的区域中对一个不透明的图形模板遮盖,继而下面的腐蚀或扩散将只影响选...转载 2020-02-20 18:03:55 · 8602 阅读 · 1 评论 -
【论文阅读】Object affordance based multimodal fusion for natural Human-Robot interaction (视音信息融合)
论文来源摘要利用语义识别控制、视觉上基于卷积神经网络二者的模态融合控制实现人机交互,研究可识别物体的提供能力,并进行了分类抓取的实验。Instruction语音控制自然直接,是人机交互重要的手段。目前深度学习在语义识别中有着突出的优势,有许多自然语言项目(NPL)工具包和库可以利用比如NLTK,spaCy,Stanford CoreNLP。在给出语音命令时,许多是根据物体可提供性而给出...原创 2020-02-19 23:10:05 · 590 阅读 · 0 评论 -
多传感器数据融合原理
多传感器数据融合原理多传感器数据融合技术的基本原理就像人脑综合处理信息一样,充分利用多个传感器资源,通过对多传感器及其观测信息的合理支配和使用,把多传感器在空间或时间上冗余或互补信息依据某种准则来进行组合,以获得被测对象的一致性解释或描述。具体地说,多传感器数据融合原理如下:(1)N个不同类型的传感器(有源或无源的)收集观测目标的数据;(2)对传感器的输出数据(离散的或连续的时间函数数据、输...原创 2019-12-29 21:06:10 · 3319 阅读 · 1 评论