
计算机视觉
Enochzhu
Per~
展开
-
批量将长视频剪切为短视频 opencv+python
import numpy as npimport cv2import os# 获得视频对象 in_path = "D:/SIAT/UCAS/Affective Computing/video"names = os.listdir(in_path)out_path = 'D:/SIAT/UCAS/Affective Computing/video_processed'for name in names: index = name.rfind('.') name = name[:原创 2021-05-25 20:15:53 · 1252 阅读 · 1 评论 -
CNN图像分类网络发展简介
CNN图像分类网络一点废话:CNN网络主要特点是使用卷积层,这其实是模拟了人的视觉神经,单个神经元只能对某种特定的图像特征产生响应,比如横向或者纵向的边缘,本身是非常简单的,但是这些简单的神经元构成一层,在层数足够多后,就可以获取足够丰富的特征。从机制上讲,卷积神经网络与人的视觉神经还真是像。下面进入正题。LeNet(1998)网络基本架构为:conv1 (6) -> pool1 -> conv2 (16) -> pool2 -> fc3 (120) -> fc4 (84转载 2020-06-11 15:40:19 · 2066 阅读 · 0 评论 -
KNN(最近邻分类)、线性分类、损失函数、优化器
KNN(最近邻分类)在图像分类中的应用如图所示,左侧为待检测图像,右侧为已知图像类别的图像。将待检测图像与每个已知类别的图像进行L1或L2距离的计算,所得距离越小二者图片相似度越高。将右侧图像按照计算所得的距离由小到大排列,将最近的K(K=1,2,3…)张图像的类别作为待测图像的类别。两个相同的尺寸的图像可以用两个大小相同的矩阵表述,将两个矩阵对应的元素做差后整体求和就是L1距离,对对应元素做差的平方在整体求和后开根号就是L2距离。L2相较于L1对于坐标系变换旋转的影响不敏感。线性分类器如图所原创 2020-06-02 15:24:48 · 2091 阅读 · 0 评论 -
卷积神经网络(Convolutional Neural Network, CNN )基本原理
目录1.卷积神经网络介绍1.1各层介绍1.2卷积神经网络可视化介绍1.卷积神经网络介绍1.1各层介绍卷积神经网络类似于普通的神经网络,由可学习权重的神经元组成,由于其在图像处理上的优势,经常用于计算机视觉处理相关领域。整个卷积神经网络的简单理解为一个打分函数,将原始的图像像素作为输入,将对分类的评分作为输出。在最后的全连接层内,损失函数用于对权重进行评分。卷积神经网络是专门为图像处理设计的,其在向前传播的过程中更加有效率,并且大幅减少了网络中的参数数量。如图2.1所示为卷积神经网络与全连接神经网络对原创 2020-05-31 22:49:14 · 2596 阅读 · 0 评论 -
IOU ,GIOU ,DIOU,CIOU 介绍
目录文章目录IOU & GIOU & DIOU 介绍及其代码实现目录IOU介绍计算代码GIOU介绍代码DIOU介绍代码CIOU介绍DIOU CIOU结果分析代码总结参考资料IOU介绍IoU 的全称为交并比(Intersection over Union),通过这个名称我们大概可以猜到 IoU 的计算方法。IoU 计算的是 “预测的边框” 和 “真实的边框” 的交集和并集的比...转载 2020-04-12 22:10:42 · 6180 阅读 · 0 评论 -
shutil.copyfile()复制文件
读取文件夹内所有文件数,随机分成训练集、测试集,将生成的text文件遍历后,移动xml文件和jpg图片到训练集测试集中import os import randomfrom shutil import copyfile def create_main_txts(trainval_percent, train_percent): xmlfilepath = '/home/pe...原创 2020-04-11 18:03:57 · 3583 阅读 · 0 评论 -
python批量修改文件名
import ospath_name = r'G:/data_annimal/data/' # 批量修改的文件夹路径i = 1 # 起始数字#f = open('G:/data_annimal/1.txt', mode='w') # 生成一个txt文件用于记录原始名和新名for item in os.listdir(path_name): original_name = o...原创 2020-04-08 23:50:41 · 261 阅读 · 0 评论 -
残差网络(Residual Networks, ResNets)
残差网络(Residual Networks, ResNets) </h1> <div class="clear"></div> <div class="postBody"> <div id="cnblogs_post_des...转载 2020-04-08 10:59:45 · 421 阅读 · 0 评论 -
深度学习——优化器算法Optimizer详解(BGD、SGD、MBGD、Momentum、NAG、Adagrad、Adadelta、RMSprop、Adam)
在机器学习、深度学习中使用的优化算法除了常见的梯度下降,还有 Adadelta,Adagrad,RMSProp 等几种优化器,都是什么呢,又该怎么选择呢?在 Sebastian Ruder 的这篇论文中给出了常用优化器的比较,今天来学习一下:https://arxiv.org/pdf/1609.04747.pdf本文将梳理:每个算法的梯度更新规则和缺点为了应对这个不足而提出的下...转载 2020-04-05 17:32:35 · 429 阅读 · 0 评论 -
图像卷积与滤波的一些知识点
...转载 2020-02-25 19:43:36 · 338 阅读 · 0 评论