书生·浦语大模型实战营学习笔记(一)

人工智能模型经历了从专用模型到通用大模型的转变。专用模型,如AlphaGo,针对特定任务,一个模型解决一个问题;通用大模型,如ChatGPT,能够应对多种任务、多种模态。因此,大模型成为发展通用人工智能的重要途径。

书生·浦语大模型的开源历程

书生·浦语 2.0(InternLM2)的体系

面向不同使用需求,每个规格包含三个模型版本:

  • InternLM2-Base:高质量和具有很强可塑性的模型基座,是模型进行深度领域适配的高质量起点
  • InternLM2:在Base基础上,在多个能力方向进行了强化,在评测中成绩优异,同时保持了很好的通用语言能力,是推荐在大部分应用中考虑选用的优秀基座
  • InternLM2-Chat:在Base基础上,经过SFT和RLHF,面向对话交互进行了优化,具有很好的指令遵循、共情聊天和调用工具等能力

InternLM2 系列模型的特性

  • 有效支持20万字超长上下文:模型在 20 万字长输入中几乎完美地实现长文“大海捞针”,而且在 LongBench 和 L-Eval 等长文任务中的表现也达到开源模型中的领先水平。 可以通过 LMDeploy 尝试20万字超长上下文推理。
  • 综合性能全面提升:各能力维度相比上一代模型全面进步,在推理、数学、代码、对话体验、指令遵循和创意写作等方面的能力提升尤为显著,综合性能达到同量级开源模型的领先水平,在重点能力评测上 InternLM2-Chat-20B 能比肩甚至超越 ChatGPT (GPT-3.5)。
  • 代码解释器与数据分析:在配合代码解释器(code-interpreter)的条件下,InternLM2-Chat-20B 在 GSM8K 和 MATH 上可以达到和 GPT-4 相仿的水平。基于在数理和工具方面强大的基础能力,InternLM2-Chat 提供了实用的数据分析能力。
  • 工具调用能力整体升级:基于更强和更具有泛化性的指令理解、工具筛选与结果反思等能力,新版模型可以更可靠地支持复杂智能体的搭建,支持对工具进行有效的多轮调用,完成较复杂的任务。

从模型到应用

从书生·浦语大模型到智能客服、个人助手、行业应用的典型流程如图所示

书生·浦语全链条开源开放体系

  • 数据:利用“书生·万卷”数据库,包含2TB的多模态数据,如文本、图像文本数据集和视频数据,以及OpenDataLab的开放数据平台
  • 预训练:使用InterLM-Train框架,支持并行训练,以优化性能和效率
  • 微调:提供XTuner高效微调框架,支持全参数微调,适用于各种硬件环境,能在2080显卡上微调7B模型
  • 部署:LMDeploy框架支持大语言模型的高效部署,解决了内存开销大、动态Shape处理等技术挑战
  • 评测:OpenCompass评测工具提供全方位的性能和能力测试,包括六大维度的评估
  • 应用:提供Lagent和AgentLego智能体框架和工具箱,支持多模态应用和各类智能体的快速开发和部署

总结

书生·浦语大模型全链路开源体系是一个综合性的开源框架,用于开发和部署通用大模型,涵盖从数据准备、模型预训练、微调到部署和评估的完整流程。该体系通过提供不同规模的模型配置(从7B到128B参数模型),以及高效的训练和部署工具,使得开发者能够针对各种复杂场景设计和优化AI模型,同时也支持多模态数据处理和智能体的快速开发。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值