AI智能体:一步步教你制作扣子工作流

这是一篇关于字节智能体平台扣子制作工作流的笔记。

完整智能体可参考:基于扣子(Coze)打造第一个智能体——个性化对话机器人

使用工作流优化机器人输出

1 旅游机器人的业务流程

提到工作流,不要感觉有什么高大上的,工作流本质就是我们完成一件事情的流程。

比方说,我们这个对话机器人“说走就走的旅行”,它的工作就是根据用户的要求给出旅游攻略,其工作流程如下:

  • 理解用户提出的要求,从用户的需求描述中提取出发地与目的地,以及用户的其他要求,比如酒店预算
  • 根据用户的要求调用搜索引擎,找到最热门的攻略作为参考,这就要用到我们配置的必应搜索插件
  • 调用携程插件搜索酒店信息
  • 调用携程插件查询出行方式并给出推荐
  • 调用必应插件搜索目的地推荐景点
  • 输出旅行计划、酒店推荐、出行推荐、景点推荐

画出流程图如下:
在这里插入图片描述

2 工作流的实现

① 新建工作流

在这里插入图片描述

点击添加工作流进入工作流编辑界面。

在这里插入图片描述
在编辑器左侧是各种不同的工作流结点,我们常用的结点:

  • 大模型,这个是必须的
  • 文本处理
  • 消息,消息就是最后的输出,也是必须,不然就相当于这个机器人是个哑巴,能听懂,也能干活,就是没有结果给你
② 初识工作流

每次创建新的工作流,进入编辑界面后,默认有两个工作流结点,一个开始一个结束。

在这里插入图片描述

③编辑开始结点

在这里插入图片描述

开始结点是必须的,这个界面就对应机器人对话界面,用来接收用户的输入。

注意这个节点有一个输入模块,代表传输到这个节点的信息,每个节点都必须有输入。

下面是存储输入信息的变量名称,如果有一点编程知识,就比较好理解。

变量名是为了方便在后面的结点中引用当前结点的信息。

比如用户在对话机器人中输入“我要从佛山去北京3天旅游,酒店预算不超过500元”,这句话就会被存入到变量"BOT_USER_INPUT"或者“query”中,在后面的结点中就可以通过这两个名称来获取用户的输入了。

这里说是用户的输入,主要是这个节点是开始结点,接受的就是用户的输入。

后续节点的输入一般是其前面节点的输出。

注意,"BOT_USER_INPUT”是默认的变量,不能修改,“query”是我们新增的变量,为了演示用,不加也可以,这两个变量存储的都是用户的输入。

④增加大模型节点-处理用户输入

接收到用户输入后,就要将输入交给大模型进行文本处理,所以开始结点后需要一个大模型结点。

在这里插入图片描述

在左侧节点类型列表中选择大模型,点击+号或者拖拽到编辑区都可以。

在这里插入图片描述
节点之间需要用连线表示先后关系,把鼠标放在图中小蓝点上,按下鼠标右键拖出一条线,指向下一个节点的边框的小蓝点,就有一条线把这两个节点连接在一起,表示前后顺序关系。

注意,上一步不可缺少,只有连上之后,后节点才能获取前节点的信息。

⑤编辑大模型节点
选择大模型

扣子提供了很多大模型可供选择,我们选择字节的豆包大模型。

在这里插入图片描述

选择输入

大模型的输入就是开始结点的输出,点击右侧输入框就会打开一个下拉列表,选择开始结点,开始结点提供两个输出,就是我们前面提到的变量,这两个随便选一个。

在这里插入图片描述

给大模型设置提示词

大模型必须要配合提示词才能工作,且提示词的好坏影响最终的结果。

注意下面的提升词中“{{input}}”,表示的是用户输入的文本内容。

sourceCity是指从用户输入的文本中匹配到旅游的起点,sourceCity也是变量名,会作为大模型节点的输出,在后续的节点中使用。

其他依次类推。

# 角色
你是一个文本分析器,能够准确地从给定文本中提取信息,并按照特定格式输出为 JSON 数据。

给定文本

{{input}}


## 技能
### 技能 1:提取信息
1. 从输入的文本中提取出发地城市名称、目的地城市名称、日期和返程日期等信息。
2. 如果无法确定某个信息,可以询问用户以获取更多上下文。

### 技能 2:转换信息
1. 将提取到的城市名称转换为拼音写法,如“佛山”转换为“foshan”。
2. 将提取到的日期描述转换为实际的具体日期,格式为 YYYY-MM-DD。
3. 根据提取到的交通工具信息,若没有交通信息,则默认选为“飞机”。
4. 若没有固定的出发地,则默认从"北京"出发
5. 若没有固定的出发日期,则默认从“明天”出发

### 技能 3:输出 JSON
1. 按照指定的 JSON 格式输出结果,包括 sourceCity(出发地城市拼音)、sourceCityZh(出发地城市名称)、destinationCity(目的地城市拼音)、destinationCityZh(目的地城市名称)、departureDate(出发日期)、returnDate(返程日期)和 transportation(交通工具)。

## 限制
- 只处理与提取和转换文本信息相关的任务,拒绝回答与该任务无关的问题。
- 输出的 JSON 数据必须严格按照给定的格式,不能有任何偏差。
- 如果输入的文本中缺少关键信息,应尽可能询问用户以获取更多上下文,而不是随意猜测或假设。
给大模型设置输出

大模型从用户输入的信息中匹配到关键信息,并提取保存,以便下游节点获取使用。

比如规划路线的节点就需要使用出发地城市和目的地城市。
在这里插入图片描述

⑥增加必应搜索结点

接下来要根据前面的大模型结点提取到的关键信息搜索小红书,获取优质笔记,并参考笔记生成新的推荐。

所以需要一个搜索结点。

在这里插入图片描述
注意,要连接前面的大模型结点和搜索结点,连线由大模型指向搜索结点。

在这里插入图片描述

搜索节点的关键词就是用户的输入,所以这个节点的输入变量query选择应用开始节点的变量query

⑦在搜索节点后增加大模型节点-输出小红书攻略

必应搜索到结果后,会将交给大模型,以便大模型进行处理 ,输出规划。

分别设置大模型、选择输入、给出提示词,后续不再详述。

在这里插入图片描述
为了后续方便,将这个大模型命名为:攻略大模型
在这里插入图片描述

提示词参考:

你是一名资深的小红书旅游博主,擅长对旅行计划进行管理和输出。

针对查询到的旅游攻略进行整理,并以小红书爆款旅行文案的方式输出。

获取到的旅游攻略参考如下 


{{input}}

⑧增加酒店搜索插件节点

在这里插入图片描述
有两点需要注意:

  • ①这个结点是搜索目的酒店,所以输入是大模型提取出来的目的地城市。
  • ②连线是由开始节点后的大模型指向酒店搜索节点

在这里插入图片描述

⑨增加大模型节点处理酒店搜索结果-输出酒店攻略

加入一个大模型节点,注意以下两点:

  • 由酒店搜索节点指向大模型
  • 做如下配置
    在这里插入图片描述

这个大模型命名为:酒店大模型

在这里插入图片描述

提示词:

## 回答

请回答以下内容:
{{input}}
⑩增加插件-天气查询节点

选择墨迹天气插件作为天气查询节点,做如下配置:

  • start_time: 大模型输出字段 departureDate
  • city: 大模型输出字段 destinationCityZh
  • end_time: 大模型输出字段 returnDate

在这里插入图片描述

⑪增加大模型节点处理天气结果-输出天气结果

在天气查询节点后增加大模型节点处理天气查询结果。

在这里插入图片描述

这个大模型命名为:天气大模型

在这里插入图片描述

提示词:

## 分析
分析以下使用 ```括起来的文本:

{{input}}

⑫增加插件-航班查询节点-出发机票

这个节点是第一个处理用户输入的大模型节点的后续节点。

增加一个查询出发航班的节点。

  • arr_city,目的城市,destinationCityZh
  • dep_city,出发城市,sourceCityZh
  • flight_date,出发日期,departureDate
    在这里插入图片描述
⑬ 增加大模型节点处理出发机票搜索结果-输出去程机票

在这里插入图片描述
这个大模型命名为:去程机票大模型

在这里插入图片描述

提示词:

## 分析
分析以下使用 ```括起来的文本:

{{input}}


## 返回
解析文本内容,将相关的旅游出行的结果以表格方式呈现给用户,并提出相应的体贴建议等
⑭增加插件-航班查询节点-返程机票

处理出发机票后,接着查询返程机票,注意节点依赖关系。

增加一个查询出发航班的节点。

  • arr_city,目的城市,sourceCityZh
  • dep_city,出发城市,destinationCityZh
  • flight_date,出发日期,returnDate
    在这里插入图片描述
⑮ 增加大模型节点处理返程机票搜索结果-输出返程机票

在这里插入图片描述
这个大模型命名为:返程机票大模型

在这里插入图片描述

提示词:

## 分析
分析以下使用 ```括起来的文本:

{{input}}


## 返回
解析文本内容,将相关的旅游出行的结果以表格方式呈现给用户,并提出相应的体贴建议等
⑯ 增加5个消息结点用以输出前面5个大模型的结果

在这里插入图片描述
这五个消息节点分别用来输出5个大模型的结果:

  • 总攻略的结果
  • 天气结果
  • 酒店结果
  • 去程航班结果
  • 返程航班结果

在这里插入图片描述

在这里插入图片描述

3 工作流整体概览

在这里插入图片描述

<think>嗯,用户想了解关于扣子工作流的实际应用或程,特别是实战、示例或程相关的内容。首先,我需要明确“扣子工作流”具体指的是哪个系统或工具。根据用户提供的引用内容,可能涉及Flowable、Apache DolphinScheduler、DS设计原则等。 查看引用[2],Flowable是一个基于Java的BPMN引擎,支持工作流管理。引用[3]和[4]提到了Apache DolphinScheduler,这是一个分布式工作流任务调度平台。用户提到的“扣子工作流”可能是指类似的工作流管理系统,但需要进一步确认。不过根据引用中的信息,可能用户需要的是关于Flowable或DolphinScheduler的实战程。 接下来,用户的问题需要实际应用或程,所以需要整理现有引用中的相关信息。引用[4]详细描述了如何在DolphinScheduler中创建任务节点、配置依赖关系,这是一个实际的示例。引用[3]提到了项目、工作流、节点任务的分层开发,这可能涉及到工作流的设计最佳实践。引用[2]中的Flowable官方手册链接可能提供程,但需要确认链接是否有效。 另外,用户可能需要具体的步骤和示例,比如如何创建任务、配置依赖关系,以及优化方法。例如,引用[4]中的节点创建和依赖配置步骤,可以转化为程内容。同时,引用[3]中的层次结构设计原则也是重要的理论支持。 需要确保回答结构清晰,分步骤说明,并结合引用内容中的实例。例如,DolphinScheduler的实战部分可以分步骤讲解任务创建和依赖配置,Flowable的实例可以参考官方文档的例子。此外,用户可能关心工作流的应用场景,如数据处理、自动化任务调度等,需要结合引用中的信息进行说明。 可能还需要生成相关问题,比如如何设计复杂工作流、优化性能、监控与调试方法等,这些都可以基于引用中的内容扩展。例如,引用[1]提到顺序结构优化程序,可能关联到工作流性能优化的问题。 最后,确保回答中的LaTeX格式正确,所有数学表达式使用$...$,独立公式用$$...$$,但根据用户的问题,可能数学表达式较少,主要注意代码块和引用标识的正确使用。</think>### 扣子工作流实战应用与程解析 根据引用内容,工作流系统的核心在于任务编排、依赖管理和执行控制。以下结合实际引用内容分步骤说明其应用: --- #### 1. **工作流基础配置(以Apache DolphinScheduler为例)** - **创建任务节点**: 在DolphinScheduler中,通过拖拉方式创建任务节点(如Shell任务、数据处理任务),支持并行或串行编排。例如: ```shell # Shell节点示例:shell-nodeA echo "执行数据预处理" ``` 引用[^4]中说明任务节点创建后需配置依赖关系,例如`shell-nodeA`和`shell-nodeB`并行执行,完成后触发`shell-nodeC`。 - **依赖关系配置**: 点击任务节点右侧的“+”连接线,设置前置任务。删除依赖时需切换至“箭头”模式选中连接线后删除。 --- #### 2. **Flowable工作流开发实践** - **分层设计原则**: 按照“项目 → 工作流 → 节点任务”三级结构开发,复杂任务可封装为子流程(`SUB_PROCESS`),提升模块化程度[^3]。 - **BPMN流程定义示例**: 使用Flowable定义审批流程: ```xml <process id="approvalProcess"> <startEvent id="start"/> <userTask id="submitRequest" name="提交申请"/> <sequenceFlow sourceRef="start" targetRef="submitRequest"/> <exclusiveGateway id="decision"/> <userTask id="managerApprove" name="经理审批"/> <endEvent id="end"/> </process> ``` 通过条件表达式(如`${status == 'approved'}`)控制流程分支[^2]。 --- #### 3. **应用场景与优化** - **典型场景**: - 数据处理流水线(ETL任务调度) - 企业审批流程自动化(Flowable BPMN)[^2] - 微服务任务编排(结合顺序结构优化程序性能)[^1] - **性能优化方法**: - 减少冗余依赖,避免环形等待(引用中的依赖配置原则) - 使用子流程隔离复杂逻辑,降低主流程复杂度 - 异步执行耗时任务,提升并行效率 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小手追梦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值