深度解析|AI绘画中SD1.5、SDXL、Checkpoint、Lora 的含义与原理

自接触AI绘画以来,我发现很多朋友对一些基础词汇理解地很模糊,然后在搭建comfyui工作流时,只能知其然,不知其所以然的感觉,也不知搭选哪个模型,很多时候都是照猫画虎地模仿,很难受。而且,很多时候,网上找不到详细地教程来详细解释这些含义。

今天我将对一些基础词汇做一个复盘,在这里做了个分享。

今天给大家分享的是 stable diffusion中的一些基础问题,主要分三块:

  1. SDXL、SD1.5是什么意思

  2. checkpoint、lora是什么意思

  3. checkpoint和lora的区别

放轻松,我会通过设计师的视角帮大家更好地理解。

问题1:SDXL、SD1.5这些版本有什么区别,到底有多少版本?

为什么会出现这个问题,是因为每次在浏览网站或者别人的视频时,左上角的xl,lora等搞得我莫名其妙,云里雾里。一会儿1.0,一会儿1.5,一会儿XL,不明所以。

其实这么回事:SD是stable diffusion的缩写,后面的后缀其实是各个版本的称号;

Stable Diffusion (SD) 自发布以来经历了多个版本的迭代。以下是SD主要版本的概览:

  1. Stable Diffusion v1.0 (2022年8月)首次公开发布

  2. Stable Diffusion v1.1 - v1.4 (2022年8月-10月)陆续发布的小版本更新,主要改进模型性能和质量

  3. Stable Diffusion v1.5 (2022年10月)在1.4基础上的进一步改进

  4. Stable Diffusion v2.0 (2022年11月)重大更新,改进了文本理解和图像质量

  5. Stable Diffusion v2.1 (2022年12月)对2.0的改进,增强了生成能力

  6. Stable Diffusion XL 0.9 (2023年6月)SDXL的预览版本

  7. Stable Diffusion XL 1.0 (2023年7月)目前最新的主要版本,大幅提升了模型能力

每个版本都比之前的版本生图质量更好,学习的图片数量也更多。接下来就给大家简单做个区分:

SD v1.1-1.5:训练的图片基本上都是 512*512 大小;

SD v2.0-2.1: 训练的图片大小是768*768;

SD XL:分别以600000步256*256 和200000步 512*512 大小的图片进行训练,适合生成1024*1024大小的图片,生成质量大大提高,非常受欢迎。

简单理解就是SD的每一个版本都比之前的版本 训练的步数更多,出图的质量更好。

那这么多版本,我应该下载哪个版本最合适呢?这里我推荐大家下载sd1.5和sdXL这两个版本,因为1.5版本生态最繁荣,sdXL 出图质量最好,画面表现高,但是占用显存略高,训练速度慢。

如果大家现在手里还没有这两个模型,可以看下方扫描免费获取模型文件

问题2:checkpoint、lora是什么意思?

梳理了stable diffusion各版本之后,接下来帮大家理解checkpoint和lora的含义和不同;

2.1什么是checkpoint?

Checkpoint是深度学习中常用的一个术语,用于描述在每次训练后保存模型参数(权重)的惯例。类似于游戏中保存关卡的功能,Checkpoint允许我们在训练过程中保存模型的状态,以便之后可以加载这些保存的参数并继续训练或进行推理。

简单理解的话,checkpoint就是在stable diffusion底模的基础上,再次训练得到特定风格的,更适合生成某种调性图片的模型。

所以我们可以在网上看到很多的checkpoint,这些都是在底模的基础上再次训练得到的。

每种checkpoint都可以在详情页中看到基础模型的版本,看下图:

这个大家要注意了。ControlNet 跟模型的版本是一一对应的,如果checkpoint的版本和ControlNet 模型版本不一致,就会报错,因为训练的图片尺寸不一样。

报错信息如下:

2.2:什么是lora?

lora(Localized Refinement of Attributes)不同于checkpoint,lora可以看成是在基础模型生成的图片上,加了一层“滤镜”,达到切换风格的效果。因此他的体积很小,只有几百MB,受到很多小伙伴的青睐,毕竟一般人没有那么大的算力和时间去训练一个checkpoint,但是训练一个lora只要几个小时,而且要的训练素材也很少,优势很大,非常吸引人。

我们可以把lora理解成英雄联盟中的皮肤,原始的皮肤是大模型,后续的皮肤就是lora,lora可以改变英雄的服装,姿态,但是主要框架是不变的。所以说lora技术是一种轻量化的模型微调训练方法。

我们可以在很多网站上下载不同风格的lora,有时候大家会遇到一个问题,就是lora出来的图片效果没有网站发布的案例好看,可能是因为没有选对底模的原因。

或者是没有输入触发词:

问题3:checkpoint和lora 的区别在哪里:

如果大家仔细看过上面的内容,不难理解两者的区别:

最后怎么在AI绘画工具ComfyUI中选lora,需要在“新建节点”下找到“加载器”,再找到“lora加载器”:

然后再lora节点中选择自己已经下载好的lora就可以啦

lora文件的存储位置在:models下的loras中

今天的分享到这里就结束了,通过这篇文章,希望大家能更好的理解sd各版本的差异和lora的使用,了解了这些基础知识之后,可以帮助大家更快地上手ComfyUI

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

对于0基础小白入门:

如果你是零基础小白,想快速入门AI绘画是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!

零基础AI绘画学习资源介绍

👉stable diffusion新手0基础入门PDF👈

(全套教程文末领取哈)
在这里插入图片描述

👉AI绘画必备工具👈

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉AI绘画基础+速成+进阶使用教程👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉12000+AI关键词大合集👈

在这里插入图片描述

这份完整版的AI绘画全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
<think>好的,我现在需要帮助用户了解或实现得物签名的相关技术,特别是签名算法的实现方式。首先,我需要收集已有的信息。根据用户提供的引用,特别是引用[4][5],得物的签名算法可能涉及逆向工程分析,使用了JavaScript中的XMLHttpRequest重写来拦截请求,并在请求中包含特定的sign参数。这可能意味着签名生成是在客户端进行的,通常在前端JavaScript代码中完成。 接下来,我应该考虑常见的签名生成方法。常见的Web应用签名算法通常使用HMAC、AES、RSA或自定义的哈希组合。引用[1]提到了RSA算法,但得物的签名可能更倾向于使用HMAC-SHA256之类的哈希算法,结合时间戳、随机数请求参数进行签名,以防止篡改重放攻击。 用户可能需要具体的步骤,比如逆向分析得物的JavaScript代码,找到生成sign的函数,提取关键参数加密逻辑。引用[5]中的代码片段展示了如何重写XMLHttpRequest的open方法来拦截请求,这可能用于调试定位签名生成的代码位置。 此外,引用[4]提到使用Python进行算法还原,所以可能需要在Python中复现JavaScript的签名生成逻辑。这通常涉及分析请求参数如何排序、拼接,以及如何密钥结合进行哈希或加密。需要注意反爬机制,如obfuscation(代码混淆)或动态密钥,这可能需要使用AST(抽象语法树)解析或动态执行来还原算法。 用户可能还需要了解如何应对反调试措施,比如在Chrome开发者工具中使用断点调试,或者使用工具如Frida进行Hook。同时,引用[3][4]强调了法律合规问题,确保研究仅用于学习目的,不用于非法用途。 最后,应该提醒用户注意法律风险,遵循网站的使用条款,避免侵犯知识产权或违反计算机安全法律。总结起来,实现得物签名需要逆向工程分析前端代码,提取关键算法,处理可能的混淆反调试,最后用目标语言如Python复现算法。</think>### 得物签名算法实现方式分析 得物签名算法主要用于接口请求的身份验证防篡改保护,常见实现方式涉及以下技术点: #### 1. **签名参数组成** 签名通常由以下参数动态生成: - 请求参数(经排序、过滤空值后拼接) - 时间戳(如:$timestamp=1620000000$) - 随机数(如:$nonce=5a8s3d$) - 设备指纹(如:$device\_id=abcdef$) - 应用密钥(加密盐值,可能动态获取)[^4] 示例参数拼接逻辑: $$ \text{sign\_str} = \text{path} + \text{sorted\_params} + \text{timestamp} + \text{nonce} $$ #### 2. **加密算法类型** 根据逆向分析,得物可能采用以下组合: - **HMAC-SHA256**:对拼接字符串进行哈希运算 - **AES/Base64编码**:对结果二次处理 - **自定义位移/异或操作**:增加逆向难度[^5] #### 3. **JavaScript代码混淆** 关键函数可能被混淆,例如: ```javascript function _0x12ab5(a, b) { return a ^ b << 3; } // 需要AST解析还原控制流 ``` #### 4. **Python算法还原示例** ```python import hmac import hashlib def generate_sign(params, secret_key): # 1. 参数排序并拼接 sorted_str = '&'.join([f"{k}={v}" for k,v in sorted(params.items())]) # 2. HMAC-SHA256加密 sign = hmac.new(secret_key.encode(), sorted_str.encode(), hashlib.sha256).hexdigest() # 3. 自定义处理(示例) return sign.upper() + str(int(time.time())) ``` #### 5. **反爬对抗措施** - 动态密钥:通过接口定期更新加密盐值 - 环境检测:验证是否在真机环境运行 - 请求频率限制:异常高频触发验证码[^5]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值