学习笔记(04):Python数据清洗实战-Pandas常用数据结构dataframe和方法

本文介绍了Python数据分析库Pandas中DataFrame数据结构的创建方法,包括通过列表、字典和数组的方式,并展示了如何设置行索引和列名。通过实例展示了如何创建和操作DataFrame,为数据清洗工作打下基础。
摘要由CSDN通过智能技术生成

pandas常用数据结果dataframe和方法

  • 通过pandas.DataFrame来创建DataFrame数据结构
  • pandas.DataFrame(data,index,dtyep,columns)
  • data可以为列表,array或者dict
  • index表示行索引,columns代表列名或者列标签

dataframe的三种创建方法:

1.通过列表

list1 = [['张三',23,'男'],['李四',25,'女'],['王五',21,'女']]

df1 = pd.DataFrame(list1,columns = ['姓名','年龄','性别'])

结果为:

添加index试试

df2 = pd.DataFrame(list1,index = ['A','B','C'],columns = ['姓名','年龄','性别'])

结果为:

通过字典

df3 = pd.DataFrame({'姓名':['张三',&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值